Namespaces
Variants
Actions

Difference between revisions of "Homological containment"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
A method for characterizing the dimension of a compactum lying in a Euclidean space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h0477301.png" /> in terms of metric properties of the complementary space. The essential measure of a cycle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h0477302.png" /> in a compactum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h0477303.png" /> is taken to be the least upper bound of those <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h0477304.png" /> for which it is possible to select a compact support <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h0477305.png" /> of the cycle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h0477306.png" /> such that the cycle is not homologous to zero in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h0477307.png" />. The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h0477308.png" />-dimensional homological diameter <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h0477309.png" /> of a cycle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773010.png" /> in an open set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773011.png" /> is the greatest lower bound of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773012.png" />-dimensional diameters of the bodies of all cycles that are homologous in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773013.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773014.png" />. Here, the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773016.png" />-dimensional diameter <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773017.png" /> of a compactum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773018.png" /> is the greatest lower bound of those <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773019.png" /> for which there exists a continuous <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773020.png" />-shift of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773021.png" /> in a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773022.png" />-dimensional compactum (and thus in a polyhedron).
+
<!--
 +
h0477301.png
 +
$#A+1 = 107 n = 0
 +
$#C+1 = 107 : ~/encyclopedia/old_files/data/H047/H.0407730 Homological containment
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
Any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773023.png" />-dimensional cycle of the open set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773024.png" /> which is linked with each point of the compactum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773025.png" /> is said to be a pocket around <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773026.png" />.
+
{{TEX|auto}}
 +
{{TEX|done}}
  
The pocket theorem. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773027.png" />. Then there exists an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773028.png" /> such that any pocket around <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773029.png" /> has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773030.png" />-dimensional homological diameter larger than <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773031.png" />, while the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773032.png" />-dimensional homological diameter of any cycle in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773033.png" /> is zero. Pockets around <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773034.png" /> with arbitrary small essential measure always exist in this situation. On the other hand, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773035.png" />, then there exists an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773036.png" /> such that for any pocket <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773037.png" /> around <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773038.png" /> the inequality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773039.png" /> is true (here, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773040.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773041.png" /> for any pocket <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773042.png" />).
+
A method for characterizing the dimension of a compactum lying in a Euclidean space  $  \mathbf R  ^ {n} $
 +
in terms of metric properties of the complementary space. The essential measure of a cycle  $  z $
 +
in a compactum  $  \Phi \subset  \mathbf R  ^ {n} $
 +
is taken to be the least upper bound of those  $  \epsilon > 0 $
 +
for which it is possible to select a compact support  $  \Phi _ {1} \subseteq \Phi $
 +
of the cycle  $  z $
 +
such that the cycle is not homologous to zero in  $  O ( \Phi _ {1} , \epsilon ) $.  
 +
The  $  p $-
 +
dimensional homological diameter  $  \alpha _  \Gamma  ^ {p} z $
 +
of a cycle  $  z $
 +
in an open set  $  \Gamma = \mathbf R  ^ {n} \setminus  \Phi $
 +
is the greatest lower bound of the  $  p $-
 +
dimensional diameters of the bodies of all cycles that are homologous in  $  \Gamma $
 +
to  $  z $.
 +
Here, the  $  p $-
 +
dimensional diameter  $  \alpha  ^ {p} X $
 +
of a compactum  $  X \subset  \mathbf R  ^ {n} $
 +
is the greatest lower bound of those  $  \epsilon > 0 $
 +
for which there exists a continuous  $  \epsilon $-
 +
shift of  $  X $
 +
in a  $  p $-
 +
dimensional compactum (and thus in a polyhedron).
 +
 
 +
Any  $  ( n - 1 ) $-
 +
dimensional cycle of the open set  $  \Gamma = \mathbf R  ^ {n} \setminus  \Phi $
 +
which is linked with each point of the compactum  $  \Phi $
 +
is said to be a pocket around  $  \Phi $.
 +
 
 +
The pocket theorem. Let  $  r =  \mathop{\rm dim}  \Phi \leq  n - 1 $.  
 +
Then there exists an $  \alpha > 0 $
 +
such that any pocket around $  \Phi $
 +
has $  ( r - 1) $-
 +
dimensional homological diameter larger than $  \alpha $,  
 +
while the $  r $-
 +
dimensional homological diameter of any cycle in $  \Gamma $
 +
is zero. Pockets around $  \Phi $
 +
with arbitrary small essential measure always exist in this situation. On the other hand, if $  \mathop{\rm dim}  \Phi = n $,  
 +
then there exists an $  \alpha > 0 $
 +
such that for any pocket $  z  ^ {n-} 1 $
 +
around $  \Phi $
 +
the inequality $  \mu z  ^ {n-} 1 > \alpha $
 +
is true (here, $  \alpha _  \Gamma  ^ {n-} 2 z  ^ {n-} 1 > 0 $
 +
and $  \alpha _  \Gamma  ^ {n-} 1 z  ^ {n-} 1 = 0 $
 +
for any pocket $  z  ^ {n-} 1 $).
  
 
The pocket theorem may be further strengthened using the concept of a zone around a compactum.
 
The pocket theorem may be further strengthened using the concept of a zone around a compactum.
  
The zone theorem. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773043.png" /> be a compactum of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773044.png" />. There exists a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773045.png" /> such that for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773046.png" /> and any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773047.png" /> there exists in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773048.png" /> an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773049.png" />-dimensional cycle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773050.png" /> (a zone of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773052.png" /> around <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773053.png" />), for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773054.png" /> bounding in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773055.png" />, for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773056.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773057.png" />. Furthermore, for any cycle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773058.png" /> homologous to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773059.png" /> in the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773060.png" />-neighbourhood of the latter with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773061.png" /> the inequality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773062.png" /> is valid; for any chain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773063.png" /> bounded by the cycle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773064.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773065.png" /> one has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773066.png" />.
+
The zone theorem. Let $  \Phi \subset  \mathbf R  ^ {n} $
 +
be a compactum of dimension $  r $.  
 +
There exists a $  \gamma > 0 $
 +
such that for any $  k = 1 \dots r + 1 $
 +
and any $  \epsilon > 0 $
 +
there exists in $  \Gamma = \mathbf R  ^ {n} \setminus  \Phi $
 +
an $  ( n - k) $-
 +
dimensional cycle $  v $(
 +
a zone of dimension $  n - k $
 +
around $  \Phi $),  
 +
for $  k> 1 $
 +
bounding in $  \Gamma $,  
 +
for which $  \beta  ^ {r-} k+ 1 v < \epsilon $,  
 +
$  \tau v < \epsilon $.  
 +
Furthermore, for any cycle $  w $
 +
homologous to $  v $
 +
in the $  \gamma $-
 +
neighbourhood of the latter with respect to $  \Gamma $
 +
the inequality $  \beta  ^ {r-} n+ 1 w > \gamma $
 +
is valid; for any chain $  x $
 +
bounded by the cycle $  v $
 +
in $  \Gamma $
 +
one has $  \beta  ^ {r-} n+ 1 x > \gamma $.
  
On the other hand, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773067.png" /> and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773068.png" />, then, for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773069.png" />, any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773070.png" />-dimensional cycle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773071.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773072.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773073.png" /> is homologous in its <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773074.png" />-neighbourhood (with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773075.png" />) to some cycle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773076.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773077.png" /> arbitrary small. Furthermore, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773078.png" /> and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773079.png" />, then for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773080.png" /> any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773081.png" />-dimensional cycle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773082.png" />, bounding in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773083.png" />, for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773084.png" /> (and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773085.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773086.png" />) bounds in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773087.png" /> a chain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773088.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773089.png" />. Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773090.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773091.png" />, is the greatest lower bound of those <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773092.png" /> for which there exists an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773093.png" />-shift of the vertices of the chain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773094.png" /> by means of which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773095.png" /> becomes degenerate up to dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773096.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773097.png" /> is the greatest lower bound of those <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773098.png" /> for which there exists an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h04773099.png" />-shift of the vertices of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h047730100.png" /> converting <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h047730101.png" /> to a zero chain.
+
On the other hand, if $  s > r $
 +
and if $  k = 1 \dots s + 1 $,  
 +
then, for any $  \gamma > 0 $,  
 +
any $  ( n - k) $-
 +
dimensional cycle $  z $
 +
in $  \Gamma $
 +
for which $  \tau z < \gamma $
 +
is homologous in its $  \gamma $-
 +
neighbourhood (with respect to $  \Gamma $)  
 +
to some cycle $  z  ^  \prime  $
 +
with $  \beta  ^ {s-} k z  ^  \prime  $
 +
arbitrary small. Furthermore, if $  s > r $
 +
and if $  k = 2 \dots s + 1 $,  
 +
then for any $  \gamma > 0 $
 +
any $  ( n - k ) $-
 +
dimensional cycle $  z $,  
 +
bounding in $  \Gamma $,  
 +
for which $  \beta  ^ {s-} k+ 1 z < \gamma $(
 +
and $  \tau z < \gamma $
 +
if $  s = n - 1 $)  
 +
bounds in $  \Gamma $
 +
a chain $  x $
 +
with $  \beta  ^ {s-} n+ 1 x < \gamma $.  
 +
Here $  \beta  ^ {p} x $,  
 +
$  p \geq  0 $,  
 +
is the greatest lower bound of those $  \epsilon > 0 $
 +
for which there exists an $  \epsilon $-
 +
shift of the vertices of the chain $  x $
 +
by means of which $  x $
 +
becomes degenerate up to dimension $  p $;  
 +
$  \tau x $
 +
is the greatest lower bound of those $  \epsilon > 0 $
 +
for which there exists an $  \epsilon $-
 +
shift of the vertices of $  x $
 +
converting $  x $
 +
to a zero chain.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  P.S. Aleksandrov,  "An introduction to homological dimension theory and general combinatorial topology" , Moscow  (1975)  (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  P.S. Aleksandrov,  "An introduction to homological dimension theory and general combinatorial topology" , Moscow  (1975)  (In Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
An <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h047730103.png" />-shift of a subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h047730104.png" /> contained in some Euclidean space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h047730105.png" /> is a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h047730106.png" /> such that the distance of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h047730107.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h047730108.png" /> is less than <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h047730109.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h047/h047730/h047730110.png" />.
+
An $  \epsilon $-
 +
shift of a subspace $  X $
 +
contained in some Euclidean space $  \mathbf R  ^ {m} $
 +
is a mapping $  f: X \rightarrow \mathbf R  ^ {m} $
 +
such that the distance of $  x $
 +
to $  f( x) $
 +
is less than $  \epsilon $
 +
for all $  x \in X $.

Revision as of 22:10, 5 June 2020


A method for characterizing the dimension of a compactum lying in a Euclidean space $ \mathbf R ^ {n} $ in terms of metric properties of the complementary space. The essential measure of a cycle $ z $ in a compactum $ \Phi \subset \mathbf R ^ {n} $ is taken to be the least upper bound of those $ \epsilon > 0 $ for which it is possible to select a compact support $ \Phi _ {1} \subseteq \Phi $ of the cycle $ z $ such that the cycle is not homologous to zero in $ O ( \Phi _ {1} , \epsilon ) $. The $ p $- dimensional homological diameter $ \alpha _ \Gamma ^ {p} z $ of a cycle $ z $ in an open set $ \Gamma = \mathbf R ^ {n} \setminus \Phi $ is the greatest lower bound of the $ p $- dimensional diameters of the bodies of all cycles that are homologous in $ \Gamma $ to $ z $. Here, the $ p $- dimensional diameter $ \alpha ^ {p} X $ of a compactum $ X \subset \mathbf R ^ {n} $ is the greatest lower bound of those $ \epsilon > 0 $ for which there exists a continuous $ \epsilon $- shift of $ X $ in a $ p $- dimensional compactum (and thus in a polyhedron).

Any $ ( n - 1 ) $- dimensional cycle of the open set $ \Gamma = \mathbf R ^ {n} \setminus \Phi $ which is linked with each point of the compactum $ \Phi $ is said to be a pocket around $ \Phi $.

The pocket theorem. Let $ r = \mathop{\rm dim} \Phi \leq n - 1 $. Then there exists an $ \alpha > 0 $ such that any pocket around $ \Phi $ has $ ( r - 1) $- dimensional homological diameter larger than $ \alpha $, while the $ r $- dimensional homological diameter of any cycle in $ \Gamma $ is zero. Pockets around $ \Phi $ with arbitrary small essential measure always exist in this situation. On the other hand, if $ \mathop{\rm dim} \Phi = n $, then there exists an $ \alpha > 0 $ such that for any pocket $ z ^ {n-} 1 $ around $ \Phi $ the inequality $ \mu z ^ {n-} 1 > \alpha $ is true (here, $ \alpha _ \Gamma ^ {n-} 2 z ^ {n-} 1 > 0 $ and $ \alpha _ \Gamma ^ {n-} 1 z ^ {n-} 1 = 0 $ for any pocket $ z ^ {n-} 1 $).

The pocket theorem may be further strengthened using the concept of a zone around a compactum.

The zone theorem. Let $ \Phi \subset \mathbf R ^ {n} $ be a compactum of dimension $ r $. There exists a $ \gamma > 0 $ such that for any $ k = 1 \dots r + 1 $ and any $ \epsilon > 0 $ there exists in $ \Gamma = \mathbf R ^ {n} \setminus \Phi $ an $ ( n - k) $- dimensional cycle $ v $( a zone of dimension $ n - k $ around $ \Phi $), for $ k> 1 $ bounding in $ \Gamma $, for which $ \beta ^ {r-} k+ 1 v < \epsilon $, $ \tau v < \epsilon $. Furthermore, for any cycle $ w $ homologous to $ v $ in the $ \gamma $- neighbourhood of the latter with respect to $ \Gamma $ the inequality $ \beta ^ {r-} n+ 1 w > \gamma $ is valid; for any chain $ x $ bounded by the cycle $ v $ in $ \Gamma $ one has $ \beta ^ {r-} n+ 1 x > \gamma $.

On the other hand, if $ s > r $ and if $ k = 1 \dots s + 1 $, then, for any $ \gamma > 0 $, any $ ( n - k) $- dimensional cycle $ z $ in $ \Gamma $ for which $ \tau z < \gamma $ is homologous in its $ \gamma $- neighbourhood (with respect to $ \Gamma $) to some cycle $ z ^ \prime $ with $ \beta ^ {s-} k z ^ \prime $ arbitrary small. Furthermore, if $ s > r $ and if $ k = 2 \dots s + 1 $, then for any $ \gamma > 0 $ any $ ( n - k ) $- dimensional cycle $ z $, bounding in $ \Gamma $, for which $ \beta ^ {s-} k+ 1 z < \gamma $( and $ \tau z < \gamma $ if $ s = n - 1 $) bounds in $ \Gamma $ a chain $ x $ with $ \beta ^ {s-} n+ 1 x < \gamma $. Here $ \beta ^ {p} x $, $ p \geq 0 $, is the greatest lower bound of those $ \epsilon > 0 $ for which there exists an $ \epsilon $- shift of the vertices of the chain $ x $ by means of which $ x $ becomes degenerate up to dimension $ p $; $ \tau x $ is the greatest lower bound of those $ \epsilon > 0 $ for which there exists an $ \epsilon $- shift of the vertices of $ x $ converting $ x $ to a zero chain.

References

[1] P.S. Aleksandrov, "An introduction to homological dimension theory and general combinatorial topology" , Moscow (1975) (In Russian)

Comments

An $ \epsilon $- shift of a subspace $ X $ contained in some Euclidean space $ \mathbf R ^ {m} $ is a mapping $ f: X \rightarrow \mathbf R ^ {m} $ such that the distance of $ x $ to $ f( x) $ is less than $ \epsilon $ for all $ x \in X $.

How to Cite This Entry:
Homological containment. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Homological_containment&oldid=14317
This article was adapted from an original article by A.A. Mal'tsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article