Namespaces
Variants
Actions

Difference between revisions of "Engel theorem"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
Suppose that for a finite-dimensional Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035700/e0357001.png" /> over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035700/e0357002.png" /> the linear operators
+
<!--
 +
e0357001.png
 +
$#A+1 = 39 n = 0
 +
$#C+1 = 39 : ~/encyclopedia/old_files/data/E035/E.0305700 Engel theorem
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035700/e0357003.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
are nilpotent for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035700/e0357004.png" />. Then there is a basis of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035700/e0357005.png" /> in which the matrices of all operators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035700/e0357006.png" /> are triangular with zeros on the main diagonal.
+
Suppose that for a finite-dimensional Lie algebra  $  \mathfrak g $
 +
over a field  $  k $
 +
the linear operators
  
F. Engel proved (around 1887, published in [[#References|[1]]]) that a Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035700/e0357007.png" /> with this property is solvable, from which, by a theorem of S. Lie (cf. [[Lie theorem|Lie theorem]]), the assertion stated above follows immediately. The first published proof of Engel's theorem is due to W. Killing [[#References|[2]]], who acknowledges Engel's priority. Engel's theorem is often stated in the following more general form: If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035700/e0357008.png" /> is a linear representation of a finite-dimensional Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035700/e0357009.png" /> in a vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035700/e03570010.png" /> (where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035700/e03570011.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035700/e03570012.png" /> are regarded over an arbitrary field) and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035700/e03570013.png" /> is a nilpotent endomorphism for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035700/e03570014.png" />, then there is a non-zero vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035700/e03570015.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035700/e03570016.png" /> for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035700/e03570017.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035700/e03570018.png" /> is finite-dimensional, this implies the existence of a basis in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035700/e03570019.png" /> in which all the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035700/e03570020.png" /> have triangular matrices with zeros on the main diagonal (or, what is the same, there is a complete flag <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035700/e03570021.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035700/e03570022.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035700/e03570023.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035700/e03570024.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035700/e03570025.png" />). The conclusion of Engel's theorem is also true for any representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035700/e03570026.png" /> for which the Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035700/e03570027.png" /> is the linear hull of a subset consisting of nilpotent endomorphisms and that is closed under the operation of commutation. A Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035700/e03570028.png" /> is called an Engel algebra if any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035700/e03570029.png" /> is an [[Engel element|Engel element]], that is, if all the operators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035700/e03570030.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035700/e03570031.png" />, are nilpotent or, what is the same, if for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035700/e03570032.png" /> there is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035700/e03570033.png" /> such that
+
$$
 +
\mathop{\rm ad}  X \  ( \textrm{ where  ad  }  X ( Y) = [ X , Y ] )
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035700/e03570034.png" /></td> </tr></table>
+
are nilpotent for all  $  X \in \mathfrak g $.  
 +
Then there is a basis of  $  \mathfrak g $
 +
in which the matrices of all operators  $  \mathop{\rm ad}  X $
 +
are triangular with zeros on the main diagonal.
  
(<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035700/e03570035.png" /> brackets) for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035700/e03570036.png" />. A finite-dimensional Lie algebra is an Engel algebra if and only if it is nilpotent. For infinite-dimensional algebras nilpotency does not follow from the Engel property. However, a finitely-generated Lie algebra over a field of characteristic zero in which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035700/e03570037.png" /> for some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035700/e03570038.png" /> (not depending on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/e/e035/e035700/e03570039.png" />) is nilpotent (Zel'manov's theorem, cf. also [[#References|[3]]]). For characteristic non-zero this is an open problem.
+
F. Engel proved (around 1887, published in [[#References|[1]]]) that a Lie algebra  $  \mathfrak g $
 +
with this property is solvable, from which, by a theorem of S. Lie (cf. [[Lie theorem|Lie theorem]]), the assertion stated above follows immediately. The first published proof of Engel's theorem is due to W. Killing [[#References|[2]]], who acknowledges Engel's priority. Engel's theorem is often stated in the following more general form: If  $  \rho :  \mathfrak g \rightarrow  \mathop{\rm End}  V $
 +
is a linear representation of a finite-dimensional Lie algebra  $  \mathfrak g $
 +
in a vector space  $  V $(
 +
where  $  \mathfrak g $
 +
and  $  V $
 +
are regarded over an arbitrary field) and if  $  \rho ( X) $
 +
is a nilpotent endomorphism for any $  X \in \mathfrak g $,
 +
then there is a non-zero vector  $  v \in V $
 +
such that  $  \rho ( X) v = 0 $
 +
for any  $  X \in \mathfrak g $.
 +
If  $  V $
 +
is finite-dimensional, this implies the existence of a basis in  $  V $
 +
in which all the  $  \rho ( X) $
 +
have triangular matrices with zeros on the main diagonal (or, what is the same, there is a complete flag  $  F = \{ V _ {i} \} $
 +
in  $  V $
 +
for which  $  \rho ( X) ( V _ {i} ) \subset  V _ {i-} 1 $
 +
for all  $  X \in \mathfrak g $
 +
and  $  i \geq  1 $).  
 +
The conclusion of Engel's theorem is also true for any representation  $  \rho $
 +
for which the Lie algebra  $  \rho ( \mathfrak g ) $
 +
is the linear hull of a subset consisting of nilpotent endomorphisms and that is closed under the operation of commutation. A Lie algebra  $  \mathfrak g $
 +
is called an Engel algebra if any  $  X \in \mathfrak g $
 +
is an [[Engel element|Engel element]], that is, if all the operators  $  \mathop{\rm ad}  X $,
 +
$  X \in \mathfrak g $,
 +
are nilpotent or, what is the same, if for any  $  X $
 +
there is an  $  n $
 +
such that
 +
 
 +
$$
 +
[ X ,\dots [ X , Y ] \dots ]  =  0
 +
$$
 +
 
 +
( $  n $
 +
brackets) for any  $  Y \in \mathfrak g $.  
 +
A finite-dimensional Lie algebra is an Engel algebra if and only if it is nilpotent. For infinite-dimensional algebras nilpotency does not follow from the Engel property. However, a finitely-generated Lie algebra over a field of characteristic zero in which $  (  \mathop{\rm ad}  X )  ^ {n} = 0 $
 +
for some $  n $(
 +
not depending on $  X $)  
 +
is nilpotent (Zel'manov's theorem, cf. also [[#References|[3]]]). For characteristic non-zero this is an open problem.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  S. Lie,  F. Engel,  "Theorie der Transformationsgruppen" , '''3''' , Leipzig  (1893)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  W. Killing,  "Die Zusammensetzung der stetigen endlichen Transformationsgruppen"  ''Math. Ann.'' , '''31'''  (1888)  pp. 252–290</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  J. Levitzki,  "On a problem of A. Kurosh"  ''Bull. Amer. Math. Soc.'' , '''52'''  (1946)  pp. 1033–1035</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  N. Jacobson,  "Lie algebras" , Interscience  (1962)  ((also: Dover, reprint, 1979))</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  N. Bourbaki,  "Elements of mathematics. Lie groups and Lie algebras" , Addison-Wesley  (1975)  (Translated from French)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  S. Lie,  F. Engel,  "Theorie der Transformationsgruppen" , '''3''' , Leipzig  (1893)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  W. Killing,  "Die Zusammensetzung der stetigen endlichen Transformationsgruppen"  ''Math. Ann.'' , '''31'''  (1888)  pp. 252–290</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  J. Levitzki,  "On a problem of A. Kurosh"  ''Bull. Amer. Math. Soc.'' , '''52'''  (1946)  pp. 1033–1035</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  N. Jacobson,  "Lie algebras" , Interscience  (1962)  ((also: Dover, reprint, 1979))</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  N. Bourbaki,  "Elements of mathematics. Lie groups and Lie algebras" , Addison-Wesley  (1975)  (Translated from French)</TD></TR></table>

Latest revision as of 19:37, 5 June 2020


Suppose that for a finite-dimensional Lie algebra $ \mathfrak g $ over a field $ k $ the linear operators

$$ \mathop{\rm ad} X \ ( \textrm{ where ad } X ( Y) = [ X , Y ] ) $$

are nilpotent for all $ X \in \mathfrak g $. Then there is a basis of $ \mathfrak g $ in which the matrices of all operators $ \mathop{\rm ad} X $ are triangular with zeros on the main diagonal.

F. Engel proved (around 1887, published in [1]) that a Lie algebra $ \mathfrak g $ with this property is solvable, from which, by a theorem of S. Lie (cf. Lie theorem), the assertion stated above follows immediately. The first published proof of Engel's theorem is due to W. Killing [2], who acknowledges Engel's priority. Engel's theorem is often stated in the following more general form: If $ \rho : \mathfrak g \rightarrow \mathop{\rm End} V $ is a linear representation of a finite-dimensional Lie algebra $ \mathfrak g $ in a vector space $ V $( where $ \mathfrak g $ and $ V $ are regarded over an arbitrary field) and if $ \rho ( X) $ is a nilpotent endomorphism for any $ X \in \mathfrak g $, then there is a non-zero vector $ v \in V $ such that $ \rho ( X) v = 0 $ for any $ X \in \mathfrak g $. If $ V $ is finite-dimensional, this implies the existence of a basis in $ V $ in which all the $ \rho ( X) $ have triangular matrices with zeros on the main diagonal (or, what is the same, there is a complete flag $ F = \{ V _ {i} \} $ in $ V $ for which $ \rho ( X) ( V _ {i} ) \subset V _ {i-} 1 $ for all $ X \in \mathfrak g $ and $ i \geq 1 $). The conclusion of Engel's theorem is also true for any representation $ \rho $ for which the Lie algebra $ \rho ( \mathfrak g ) $ is the linear hull of a subset consisting of nilpotent endomorphisms and that is closed under the operation of commutation. A Lie algebra $ \mathfrak g $ is called an Engel algebra if any $ X \in \mathfrak g $ is an Engel element, that is, if all the operators $ \mathop{\rm ad} X $, $ X \in \mathfrak g $, are nilpotent or, what is the same, if for any $ X $ there is an $ n $ such that

$$ [ X ,\dots [ X , Y ] \dots ] = 0 $$

( $ n $ brackets) for any $ Y \in \mathfrak g $. A finite-dimensional Lie algebra is an Engel algebra if and only if it is nilpotent. For infinite-dimensional algebras nilpotency does not follow from the Engel property. However, a finitely-generated Lie algebra over a field of characteristic zero in which $ ( \mathop{\rm ad} X ) ^ {n} = 0 $ for some $ n $( not depending on $ X $) is nilpotent (Zel'manov's theorem, cf. also [3]). For characteristic non-zero this is an open problem.

References

[1] S. Lie, F. Engel, "Theorie der Transformationsgruppen" , 3 , Leipzig (1893)
[2] W. Killing, "Die Zusammensetzung der stetigen endlichen Transformationsgruppen" Math. Ann. , 31 (1888) pp. 252–290
[3] J. Levitzki, "On a problem of A. Kurosh" Bull. Amer. Math. Soc. , 52 (1946) pp. 1033–1035
[4] N. Jacobson, "Lie algebras" , Interscience (1962) ((also: Dover, reprint, 1979))
[5] N. Bourbaki, "Elements of mathematics. Lie groups and Lie algebras" , Addison-Wesley (1975) (Translated from French)
How to Cite This Entry:
Engel theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Engel_theorem&oldid=16295
This article was adapted from an original article by V.V. Gorbatsevich (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article