Namespaces
Variants
Actions

Difference between revisions of "Truth table"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (MR,ZBL,MSC, refs, table)
 
(One intermediate revision by one other user not shown)
Line 4: Line 4:
 
A ''truth table'' is
 
A ''truth table'' is
 
a table expressing the truth values of a compound proposition in terms of the truth values of the simple propositions making it up (cf.
 
a table expressing the truth values of a compound proposition in terms of the truth values of the simple propositions making it up (cf.
[[Truth value|Truth value]]). A truth table has the form of the table below, in which T denotes  "true"  and F denotes  "false" . In it, $A_1,\dots,A_n$ are propositional variables, $\def\fA\{ {\mathfrak A} }\fA(A_1,\dots,A_n)$ is a
+
[[Truth value|Truth value]]). A truth table has the form of the table below, in which T denotes  "true"  and F denotes  "false". In it, $A_1,\dots,A_n$ are propositional variables, $\def\fA\{ {\mathfrak A} }\fA(A_1,\dots,A_n)$ is a
 
[[Propositional formula|propositional formula]], and the truth value of $\fA(A_1,\dots,A_n)$ is determined by the truth values of $\fA(A_1,\dots,A_n)$. Each row in the table corresponds to one of the $A_1,\dots,A_n$ possible combinations of truth values of the $2^n$ propositions. Also, $n$ is the truth value of $V_i$ if the $\fA(A_1,\dots,A_n)$ have the truth values indicated in the $i$-th row.
 
[[Propositional formula|propositional formula]], and the truth value of $\fA(A_1,\dots,A_n)$ is determined by the truth values of $\fA(A_1,\dots,A_n)$. Each row in the table corresponds to one of the $A_1,\dots,A_n$ possible combinations of truth values of the $2^n$ propositions. Also, $n$ is the truth value of $V_i$ if the $\fA(A_1,\dots,A_n)$ have the truth values indicated in the $i$-th row.
  
Line 32: Line 32:
  
 
|-
 
|-
|valign="top"|{{Ref|Kl}}||valign="top"|  S.C. Kleene,  "Introduction to metamathematics", North-Holland  (1951)  pp. 288 {{MR|1234051}} {{MR|1570642}} {{MR|0051790}}  {{ZBL|0875.03002}} {{ZBL|0604.03002}} {{ZBL|0109.00509}} {{ZBL|0047.00703}}  
+
|valign="top"|{{Ref|Kl}}||valign="top"|  S.C. Kleene,  "Introduction to metamathematics", North-Holland  (1952)  pp. 288 {{MR|0051790}} {{ZBL|0047.00703}}  
  
 
|-
 
|-
 
|}
 
|}

Latest revision as of 12:58, 10 August 2014

2020 Mathematics Subject Classification: Primary: 03-XX [MSN][ZBL]

A truth table is a table expressing the truth values of a compound proposition in terms of the truth values of the simple propositions making it up (cf. Truth value). A truth table has the form of the table below, in which T denotes "true" and F denotes "false". In it, $A_1,\dots,A_n$ are propositional variables, $\def\fA\{ {\mathfrak A} }\fA(A_1,\dots,A_n)$ is a propositional formula, and the truth value of $\fA(A_1,\dots,A_n)$ is determined by the truth values of $\fA(A_1,\dots,A_n)$. Each row in the table corresponds to one of the $A_1,\dots,A_n$ possible combinations of truth values of the $2^n$ propositions. Also, $n$ is the truth value of $V_i$ if the $\fA(A_1,\dots,A_n)$ have the truth values indicated in the $i$-th row.

$A_1$ $\cdots$ $A_n$ $\fA(A_1,\dots,A_n)$
$T $ $\cdots$ $ T $ $ V_1$
$T $ $\cdots$ $ F $ $V_2$
$\cdot$ $\cdots$ $\cdot$ $\cdot$
$\cdot$ $\cdots$ $\cdot$ $\cdot$
$F$ $\cdots$ $F$ $V_{2^n}$

In mathematical logic, truth functions, corresponding to such logical connectives as negation, conjunction, disjunction, implication, and equivalence, are defined using truth tables. In classical propositional calculus, truth tables are used in the verification of the general validity of formulas: A formula is generally valid if and only if in the last column of its table all $V_i$ are T's.


References

[Ha] W.S. Hatcher, "Foundations of mathematics", Saunders (1968) MR0237320 Zbl 0191.28205
[Kl] S.C. Kleene, "Introduction to metamathematics", North-Holland (1952) pp. 288 MR0051790 Zbl 0047.00703
How to Cite This Entry:
Truth table. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Truth_table&oldid=32245
This article was adapted from an original article by V.E. Plisko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article