Namespaces
Variants
Actions

Difference between revisions of "Tangent plane"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(TeX)
 
Line 1: Line 1:
''to a surface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092180/t0921801.png" /> at a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092180/t0921802.png" />''
+
{{TEX|done}}
 +
''to a surface $S$ at a point $M$''
  
The plane passing through <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092180/t0921803.png" /> characterized by the property that the distance from this plane to a variable point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092180/t0921804.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092180/t0921805.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092180/t0921806.png" /> approaches arbitrarily close to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092180/t0921807.png" /> is infinitesimally small as compared to the distance <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092180/t0921808.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092180/t0921809.png" /> is given by an equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092180/t09218010.png" />, then the equation of the tangent plane at a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092180/t09218011.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092180/t09218012.png" />, has the form
+
The plane passing through $M$ characterized by the property that the distance from this plane to a variable point $M_1$ of $S$ as $M_1$ approaches arbitrarily close to $M$ is infinitesimally small as compared to the distance $MM_1$. If $S$ is given by an equation $z=f(x,y)$, then the equation of the tangent plane at a point $(x_0,y_0,z_0)$, where $z_0=f(x_0,y_0)$, has the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092180/t09218013.png" /></td> </tr></table>
+
$$z-z_0=A(x-x_0)+B(y-y_0)$$
  
if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092180/t09218014.png" /> has a total differential at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092180/t09218015.png" />. In this case, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092180/t09218016.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092180/t09218017.png" /> are the values of the partial derivatives <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092180/t09218018.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092180/t09218019.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092180/t09218020.png" />.
+
if and only if $f(x,y)$ has a total differential at the point $(x_0,y_0)$. In this case, $A$ and $B$ are the values of the partial derivatives $\partial f/\partial x$ and $\partial f/\partial y$ at $(x_0,y_0)$.
  
  

Latest revision as of 10:22, 12 April 2014

to a surface $S$ at a point $M$

The plane passing through $M$ characterized by the property that the distance from this plane to a variable point $M_1$ of $S$ as $M_1$ approaches arbitrarily close to $M$ is infinitesimally small as compared to the distance $MM_1$. If $S$ is given by an equation $z=f(x,y)$, then the equation of the tangent plane at a point $(x_0,y_0,z_0)$, where $z_0=f(x_0,y_0)$, has the form

$$z-z_0=A(x-x_0)+B(y-y_0)$$

if and only if $f(x,y)$ has a total differential at the point $(x_0,y_0)$. In this case, $A$ and $B$ are the values of the partial derivatives $\partial f/\partial x$ and $\partial f/\partial y$ at $(x_0,y_0)$.


Comments

For references see Tangent line.

How to Cite This Entry:
Tangent plane. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Tangent_plane&oldid=14114
This article was adapted from an original article by BSE-3 (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article