Namespaces
Variants
Actions

Difference between revisions of "Sequent calculus"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
s0845801.png
 +
$#A+1 = 38 n = 0
 +
$#C+1 = 38 : ~/encyclopedia/old_files/data/S084/S.0804580 Sequent calculus
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
One of the formulations of the [[Predicate calculus|predicate calculus]]. Due to the convenient representation of derivations, the sequent calculus has wide applications in [[Proof theory|proof theory]], in the foundations of mathematics and in the automatic search for a deduction. The sequent calculus was introduced by G. Gentzen in 1934 (see [[#References|[1]]]). One version of the classical calculus of predicates in the form of the sequent calculus is presented below.
 
One of the formulations of the [[Predicate calculus|predicate calculus]]. Due to the convenient representation of derivations, the sequent calculus has wide applications in [[Proof theory|proof theory]], in the foundations of mathematics and in the automatic search for a deduction. The sequent calculus was introduced by G. Gentzen in 1934 (see [[#References|[1]]]). One version of the classical calculus of predicates in the form of the sequent calculus is presented below.
  
A collection of formulas is a finite set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084580/s0845801.png" /> of formulas of a certain logico-mathematical language <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084580/s0845802.png" />, where in this set, repetitions of formulas are permitted. The order of the formulas in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084580/s0845803.png" /> is inessential, but for each formula, the number of copies of it that are in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084580/s0845804.png" /> is given. The collection of formulas can be empty. The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084580/s0845805.png" /> is obtained from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084580/s0845806.png" /> by adjoining a copy of the formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084580/s0845807.png" />. For two collections of formulas <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084580/s0845808.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084580/s0845809.png" />, a figure of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084580/s08458010.png" /> is called a sequent; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084580/s08458011.png" /> is called the antecedent and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084580/s08458012.png" /> the successor of the sequent.
+
A collection of formulas is a finite set $  \Gamma $
 +
of formulas of a certain logico-mathematical language $  \Omega $,  
 +
where in this set, repetitions of formulas are permitted. The order of the formulas in $  \Gamma $
 +
is inessential, but for each formula, the number of copies of it that are in $  \Gamma $
 +
is given. The collection of formulas can be empty. The set $  \phi \Gamma $
 +
is obtained from $  \Gamma $
 +
by adjoining a copy of the formula $  \phi $.  
 +
For two collections of formulas $  \Gamma $
 +
and $  \Delta $,  
 +
a figure of the form $  \Gamma \rightarrow \Delta $
 +
is called a sequent; $  \Gamma $
 +
is called the antecedent and $  \Delta $
 +
the successor of the sequent.
  
The axioms of the sequent calculus have the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084580/s08458013.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084580/s08458014.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084580/s08458015.png" /> are arbitrary collections of formulas and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084580/s08458016.png" /> is an arbitrary atomic (elementary) formula. The derivation rules of the calculus have a very symmetrical structure; logical connectives are introduced into the sequent calculus by the following schemata:
+
The axioms of the sequent calculus have the form $  \phi \Gamma \rightarrow \Delta \phi $,  
 +
where $  \Gamma $
 +
and $  \Delta $
 +
are arbitrary collections of formulas and $  \phi $
 +
is an arbitrary atomic (elementary) formula. The derivation rules of the calculus have a very symmetrical structure; logical connectives are introduced into the sequent calculus by the following schemata:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084580/s08458017.png" /></td> </tr></table>
+
$$
 +
( \wedge \rightarrow) \
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084580/s08458018.png" /></td> </tr></table>
+
\frac{\phi \psi \Gamma \rightarrow \Delta }{( \phi \wedge \psi ) \Gamma \rightarrow \Delta }
 +
; \ \
 +
(\rightarrow \wedge ) \
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084580/s08458019.png" /></td> </tr></table>
+
\frac{\Gamma \rightarrow \Delta \phi ; \Gamma \rightarrow \Delta \psi }{\Gamma \rightarrow \Delta ( \phi \wedge \psi ) }
 +
;
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084580/s08458020.png" /></td> </tr></table>
+
$$
 +
( \lor \rightarrow) 
 +
\frac{\phi \Gamma \rightarrow \Delta ; \psi \Gamma \rightarrow
 +
\Delta }{( \phi \lor \psi ) \Gamma \rightarrow \Delta }
 +
;
 +
\  (\rightarrow \lor ) 
 +
\frac{\Gamma \rightarrow \Delta \phi \psi }{\Gamma \rightarrow \Delta ( \phi \lor \psi ) }
 +
;
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084580/s08458021.png" /></td> </tr></table>
+
$$
 +
( \supseteq \rightarrow ) 
 +
\frac{\Gamma \rightarrow \Delta \phi ; \psi \Gamma
 +
\rightarrow \Delta }{( \phi \supseteq \psi ) \Gamma \rightarrow \Delta }
 +
;
 +
\  (\rightarrow \supseteq ) 
 +
\frac{\phi \Gamma \rightarrow \Delta \psi }{\Gamma \rightarrow \Delta ( \phi \supseteq \psi ) }
 +
;
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084580/s08458022.png" /></td> </tr></table>
+
$$
 +
( \neg \rightarrow) 
 +
\frac{\Gamma \rightarrow \Delta \phi }{\neg \phi \Gamma
 +
\rightarrow \Delta }
 +
; \  (\rightarrow \neg ) 
 +
\frac{\phi \Gamma \rightarrow \Delta }{\Gamma \rightarrow \Delta \neg \phi }
 +
;
 +
$$
  
In the rules <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084580/s08458023.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084580/s08458024.png" /> it is assumed that the variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084580/s08458025.png" /> is not free in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084580/s08458026.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084580/s08458027.png" />, and that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084580/s08458028.png" /> is not free in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084580/s08458029.png" />.
+
$$
 +
( \forall \rightarrow) 
 +
\frac{\forall x \phi  \phi ( x \mid  t) \Gamma
 +
\rightarrow \Delta }{\forall x  \phi \Gamma \rightarrow \Delta }
 +
;
 +
\  (\rightarrow \forall ) 
 +
\frac{\Gamma \rightarrow \Delta \phi }{\Gamma \rightarrow \Delta \forall x  \phi ( y\mid  x) }
 +
;
 +
$$
  
The sequent calculus is equivalent to the usual form of predicate calculus, in the sense that a formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084580/s08458030.png" /> is deducible in the predicate calculus if and only if the sequent <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084580/s08458031.png" /> is deducible in the sequent calculus. The fundamental theorem of Gentzen (or the normalization theorem) is essential for the proof of this assertion; this theorem can be stated as follows: If the sequents <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084580/s08458032.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084580/s08458033.png" /> are deducible in the sequent calculus, then so is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084580/s08458034.png" />. The derivation rule
+
$$
 +
( \exists \rightarrow)
 +
\frac{\phi \Gamma \rightarrow \Delta }{\exists x
 +
\phi ( y \mid  x) \Gamma \rightarrow \Delta }
 +
; \  (\rightarrow \exists ) \
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084580/s08458035.png" /></td> </tr></table>
+
\frac{\Gamma \rightarrow \Delta \phi ( x \mid  t)  \exists x  \phi }{\Gamma \rightarrow \Delta  \exists x  \phi }
 +
.
 +
$$
 +
 
 +
In the rules  $  (\rightarrow \forall ) $
 +
and  $  ( \exists \rightarrow) $
 +
it is assumed that the variable  $  y $
 +
is not free in  $  \Gamma $
 +
or  $  \Delta $,
 +
and that  $  x $
 +
is not free in  $  \phi $.
 +
 
 +
The sequent calculus is equivalent to the usual form of predicate calculus, in the sense that a formula  $  \phi $
 +
is deducible in the predicate calculus if and only if the sequent  $  \rightarrow \phi $
 +
is deducible in the sequent calculus. The fundamental theorem of Gentzen (or the normalization theorem) is essential for the proof of this assertion; this theorem can be stated as follows: If the sequents  $  \Gamma \rightarrow \Delta \phi $
 +
and  $  \phi \Gamma \rightarrow \Delta $
 +
are deducible in the sequent calculus, then so is  $  \Gamma \rightarrow \Delta $.
 +
The derivation rule
 +
 
 +
$$
 +
 
 +
\frac{\Gamma \rightarrow \Delta \phi ; \phi \Gamma \rightarrow \Delta }{\Gamma \rightarrow \Delta }
 +
 
 +
$$
  
 
is called the cut rule, and the normalization theorem asserts that the cut rule is admissible in the sequent calculus, or that the addition of the cut rule does not change the collection of deducible sequents. In view of this, Gentzen's theorem is also called the cut-elimination theorem.
 
is called the cut rule, and the normalization theorem asserts that the cut rule is admissible in the sequent calculus, or that the addition of the cut rule does not change the collection of deducible sequents. In view of this, Gentzen's theorem is also called the cut-elimination theorem.
Line 29: Line 120:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  G. Gentzen,  "Untersuchungen über das logische Schliessen"  ''Math. Z.'' , '''39'''  (1935)  pp. 176–210; 405–431  ((English translation: The collected papers of Gerhard Gentzen, North-Holland, 1969; edited by M.E. Szabo))</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  G. Takeuti,  "Proof theory" , North-Holland  (1975)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  A.G. Dragalin,  "Mathematical intuitionism. Introduction to proof theory" , Amer. Math. Soc.  (1988)  (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  R. Feys,  "Modal logics" , Gauthier-Villars  (1965)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  G. Gentzen,  "Untersuchungen über das logische Schliessen"  ''Math. Z.'' , '''39'''  (1935)  pp. 176–210; 405–431  ((English translation: The collected papers of Gerhard Gentzen, North-Holland, 1969; edited by M.E. Szabo))</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  G. Takeuti,  "Proof theory" , North-Holland  (1975)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  A.G. Dragalin,  "Mathematical intuitionism. Introduction to proof theory" , Amer. Math. Soc.  (1988)  (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  R. Feys,  "Modal logics" , Gauthier-Villars  (1965)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
Intuitively, the sequent <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084580/s08458036.png" /> expresses that if all the formulas in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084580/s08458037.png" /> hold, then at least one of those in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084580/s08458038.png" /> must also hold.
+
Intuitively, the sequent $  \Gamma \rightarrow \Delta $
 +
expresses that if all the formulas in $  \Gamma $
 +
hold, then at least one of those in $  \Delta $
 +
must also hold.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  M.E. Szabo,  "Algebra of proofs" , North-Holland  (1978)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  M.E. Szabo,  "Algebra of proofs" , North-Holland  (1978)</TD></TR></table>

Latest revision as of 08:13, 6 June 2020


One of the formulations of the predicate calculus. Due to the convenient representation of derivations, the sequent calculus has wide applications in proof theory, in the foundations of mathematics and in the automatic search for a deduction. The sequent calculus was introduced by G. Gentzen in 1934 (see [1]). One version of the classical calculus of predicates in the form of the sequent calculus is presented below.

A collection of formulas is a finite set $ \Gamma $ of formulas of a certain logico-mathematical language $ \Omega $, where in this set, repetitions of formulas are permitted. The order of the formulas in $ \Gamma $ is inessential, but for each formula, the number of copies of it that are in $ \Gamma $ is given. The collection of formulas can be empty. The set $ \phi \Gamma $ is obtained from $ \Gamma $ by adjoining a copy of the formula $ \phi $. For two collections of formulas $ \Gamma $ and $ \Delta $, a figure of the form $ \Gamma \rightarrow \Delta $ is called a sequent; $ \Gamma $ is called the antecedent and $ \Delta $ the successor of the sequent.

The axioms of the sequent calculus have the form $ \phi \Gamma \rightarrow \Delta \phi $, where $ \Gamma $ and $ \Delta $ are arbitrary collections of formulas and $ \phi $ is an arbitrary atomic (elementary) formula. The derivation rules of the calculus have a very symmetrical structure; logical connectives are introduced into the sequent calculus by the following schemata:

$$ ( \wedge \rightarrow) \ \frac{\phi \psi \Gamma \rightarrow \Delta }{( \phi \wedge \psi ) \Gamma \rightarrow \Delta } ; \ \ (\rightarrow \wedge ) \ \frac{\Gamma \rightarrow \Delta \phi ; \Gamma \rightarrow \Delta \psi }{\Gamma \rightarrow \Delta ( \phi \wedge \psi ) } ; $$

$$ ( \lor \rightarrow) \frac{\phi \Gamma \rightarrow \Delta ; \psi \Gamma \rightarrow \Delta }{( \phi \lor \psi ) \Gamma \rightarrow \Delta } ; \ (\rightarrow \lor ) \frac{\Gamma \rightarrow \Delta \phi \psi }{\Gamma \rightarrow \Delta ( \phi \lor \psi ) } ; $$

$$ ( \supseteq \rightarrow ) \frac{\Gamma \rightarrow \Delta \phi ; \psi \Gamma \rightarrow \Delta }{( \phi \supseteq \psi ) \Gamma \rightarrow \Delta } ; \ (\rightarrow \supseteq ) \frac{\phi \Gamma \rightarrow \Delta \psi }{\Gamma \rightarrow \Delta ( \phi \supseteq \psi ) } ; $$

$$ ( \neg \rightarrow) \frac{\Gamma \rightarrow \Delta \phi }{\neg \phi \Gamma \rightarrow \Delta } ; \ (\rightarrow \neg ) \frac{\phi \Gamma \rightarrow \Delta }{\Gamma \rightarrow \Delta \neg \phi } ; $$

$$ ( \forall \rightarrow) \frac{\forall x \phi \phi ( x \mid t) \Gamma \rightarrow \Delta }{\forall x \phi \Gamma \rightarrow \Delta } ; \ (\rightarrow \forall ) \frac{\Gamma \rightarrow \Delta \phi }{\Gamma \rightarrow \Delta \forall x \phi ( y\mid x) } ; $$

$$ ( \exists \rightarrow) \frac{\phi \Gamma \rightarrow \Delta }{\exists x \phi ( y \mid x) \Gamma \rightarrow \Delta } ; \ (\rightarrow \exists ) \ \frac{\Gamma \rightarrow \Delta \phi ( x \mid t) \exists x \phi }{\Gamma \rightarrow \Delta \exists x \phi } . $$

In the rules $ (\rightarrow \forall ) $ and $ ( \exists \rightarrow) $ it is assumed that the variable $ y $ is not free in $ \Gamma $ or $ \Delta $, and that $ x $ is not free in $ \phi $.

The sequent calculus is equivalent to the usual form of predicate calculus, in the sense that a formula $ \phi $ is deducible in the predicate calculus if and only if the sequent $ \rightarrow \phi $ is deducible in the sequent calculus. The fundamental theorem of Gentzen (or the normalization theorem) is essential for the proof of this assertion; this theorem can be stated as follows: If the sequents $ \Gamma \rightarrow \Delta \phi $ and $ \phi \Gamma \rightarrow \Delta $ are deducible in the sequent calculus, then so is $ \Gamma \rightarrow \Delta $. The derivation rule

$$ \frac{\Gamma \rightarrow \Delta \phi ; \phi \Gamma \rightarrow \Delta }{\Gamma \rightarrow \Delta } $$

is called the cut rule, and the normalization theorem asserts that the cut rule is admissible in the sequent calculus, or that the addition of the cut rule does not change the collection of deducible sequents. In view of this, Gentzen's theorem is also called the cut-elimination theorem.

The symmetric structure of the sequent calculus greatly facilitates the study of its properties. Therefore, an important place in proof theory is occupied by the search for sequent variants of applied calculi: arithmetic, analysis, type theory, and also the proof for such calculi of the cut-elimination theorem in one form or another (see [2], [3]). Sequent variants can also be found for many calculi based on non-classical logics: intuitionistic, modal, relevance logics, and others (see [3], [4]).

References

[1] G. Gentzen, "Untersuchungen über das logische Schliessen" Math. Z. , 39 (1935) pp. 176–210; 405–431 ((English translation: The collected papers of Gerhard Gentzen, North-Holland, 1969; edited by M.E. Szabo))
[2] G. Takeuti, "Proof theory" , North-Holland (1975)
[3] A.G. Dragalin, "Mathematical intuitionism. Introduction to proof theory" , Amer. Math. Soc. (1988) (Translated from Russian)
[4] R. Feys, "Modal logics" , Gauthier-Villars (1965)

Comments

Intuitively, the sequent $ \Gamma \rightarrow \Delta $ expresses that if all the formulas in $ \Gamma $ hold, then at least one of those in $ \Delta $ must also hold.

References

[a1] M.E. Szabo, "Algebra of proofs" , North-Holland (1978)
How to Cite This Entry:
Sequent calculus. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Sequent_calculus&oldid=11707
This article was adapted from an original article by A.G. Dragalin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article