Namespaces
Variants
Actions

Difference between revisions of "Normal curvature"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
n0674401.png
 +
$#A+1 = 16 n = 0
 +
$#C+1 = 16 : ~/encyclopedia/old_files/data/N067/N.0607440 Normal curvature
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''of a regular surface''
 
''of a regular surface''
  
A quantity that characterizes the deviation of the surface at a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067440/n0674401.png" /> in the direction <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067440/n0674402.png" /> from its tangent plane and is the same in absolute value as the curvature of the corresponding [[Normal section|normal section]]. The normal curvature in the direction <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067440/n0674403.png" /> is
+
A quantity that characterizes the deviation of the surface at a point $  P $
 +
in the direction $  \mathbf l $
 +
from its tangent plane and is the same in absolute value as the curvature of the corresponding [[Normal section|normal section]]. The normal curvature in the direction $  \mathbf l $
 +
is
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067440/n0674404.png" /></td> </tr></table>
+
$$
 +
k _ {\mathbf l }  = ( \mathbf n , \mathbf N ) k ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067440/n0674405.png" /> is the curvature of the normal section in the direction <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067440/n0674406.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067440/n0674407.png" /> is the unit principal normal vector of the normal section and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067440/n0674408.png" /> is the unit normal vector to the surface. The normal curvature of a surface in a given direction is the same as that of the [[Osculating paraboloid|osculating paraboloid]] in this direction. The normal curvature of a surface parametrized by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067440/n0674409.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067440/n06744010.png" /> can be expressed in terms of the values of the first and second fundamental forms of the surface (cf. [[Fundamental forms of a surface|Fundamental forms of a surface]]) computed for the values <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067440/n06744011.png" /> corresponding to the direction <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067440/n06744012.png" /> by the formula
+
where $  k $
 +
is the curvature of the normal section in the direction $  \mathbf l $,  
 +
$  \mathbf n $
 +
is the unit principal normal vector of the normal section and $  \mathbf N $
 +
is the unit normal vector to the surface. The normal curvature of a surface in a given direction is the same as that of the [[Osculating paraboloid|osculating paraboloid]] in this direction. The normal curvature of a surface parametrized by $  u $
 +
and $  v $
 +
can be expressed in terms of the values of the first and second fundamental forms of the surface (cf. [[Fundamental forms of a surface|Fundamental forms of a surface]]) computed for the values $  ( d u , d v ) $
 +
corresponding to the direction $  \mathbf l $
 +
by the formula
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067440/n06744013.png" /></td> </tr></table>
+
$$
 +
k _ {\mathbf l }  = \
  
The curvature of a regular curve lying on a surface is connected with the normal curvature of the surface in the direction of the unit tangent <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067440/n06744014.png" /> to the curve and with the geodesic curvature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067440/n06744015.png" /> of the curve by the relation
+
\frac{\textrm{ II } }{\textrm{ I } }
 +
  = \
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067440/n06744016.png" /></td> </tr></table>
+
\frac{L  d u  ^ {2} + 2 M  d u  d v + N  d v  ^ {2} }{E  d u  ^ {2} + 2 F  d u  d v + G  d v  ^ {2} }
 +
.
 +
$$
  
(see also [[Meusnier theorem|Meusnier theorem]]). By means of the normal curvature one can construct the [[Dupin indicatrix|Dupin indicatrix]], the [[Gaussian curvature|Gaussian curvature]] and the [[Mean curvature|mean curvature]] of the surface, as well as many other concepts of the local geometry of the surface.
+
The curvature of a regular curve lying on a surface is connected with the normal curvature of the surface in the direction of the unit tangent  $  \mathbf l $
 +
to the curve and with the geodesic curvature $  k _ {g} $
 +
of the curve by the relation
  
 +
$$
 +
k \mathbf n  =  k _ {g} \mathbf N \times \mathbf l + k _ {\mathbf l }  \mathbf N
 +
$$
  
 +
(see also [[Meusnier theorem|Meusnier theorem]]). By means of the normal curvature one can construct the [[Dupin indicatrix|Dupin indicatrix]], the [[Gaussian curvature|Gaussian curvature]] and the [[Mean curvature|mean curvature]] of the surface, as well as many other concepts of the local geometry of the surface.
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  M. Berger,  B. Gostiaux,  "Differential geometry: manifolds, curves, and surfaces" , Springer  (1988)  (Translated from French)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  M.P. Do Carmo,  "Differential geometry of curves and surfaces" , Prentice-Hall  (1976)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  W. Blaschke,  K. Leichtweiss,  "Elementare Differentialgeometrie" , Springer  (1973)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  M. Berger,  B. Gostiaux,  "Differential geometry: manifolds, curves, and surfaces" , Springer  (1988)  (Translated from French)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  M.P. Do Carmo,  "Differential geometry of curves and surfaces" , Prentice-Hall  (1976)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  W. Blaschke,  K. Leichtweiss,  "Elementare Differentialgeometrie" , Springer  (1973)</TD></TR></table>

Latest revision as of 08:03, 6 June 2020


of a regular surface

A quantity that characterizes the deviation of the surface at a point $ P $ in the direction $ \mathbf l $ from its tangent plane and is the same in absolute value as the curvature of the corresponding normal section. The normal curvature in the direction $ \mathbf l $ is

$$ k _ {\mathbf l } = ( \mathbf n , \mathbf N ) k , $$

where $ k $ is the curvature of the normal section in the direction $ \mathbf l $, $ \mathbf n $ is the unit principal normal vector of the normal section and $ \mathbf N $ is the unit normal vector to the surface. The normal curvature of a surface in a given direction is the same as that of the osculating paraboloid in this direction. The normal curvature of a surface parametrized by $ u $ and $ v $ can be expressed in terms of the values of the first and second fundamental forms of the surface (cf. Fundamental forms of a surface) computed for the values $ ( d u , d v ) $ corresponding to the direction $ \mathbf l $ by the formula

$$ k _ {\mathbf l } = \ \frac{\textrm{ II } }{\textrm{ I } } = \ \frac{L d u ^ {2} + 2 M d u d v + N d v ^ {2} }{E d u ^ {2} + 2 F d u d v + G d v ^ {2} } . $$

The curvature of a regular curve lying on a surface is connected with the normal curvature of the surface in the direction of the unit tangent $ \mathbf l $ to the curve and with the geodesic curvature $ k _ {g} $ of the curve by the relation

$$ k \mathbf n = k _ {g} \mathbf N \times \mathbf l + k _ {\mathbf l } \mathbf N $$

(see also Meusnier theorem). By means of the normal curvature one can construct the Dupin indicatrix, the Gaussian curvature and the mean curvature of the surface, as well as many other concepts of the local geometry of the surface.

Comments

References

[a1] M. Berger, B. Gostiaux, "Differential geometry: manifolds, curves, and surfaces" , Springer (1988) (Translated from French)
[a2] M.P. Do Carmo, "Differential geometry of curves and surfaces" , Prentice-Hall (1976)
[a3] W. Blaschke, K. Leichtweiss, "Elementare Differentialgeometrie" , Springer (1973)
How to Cite This Entry:
Normal curvature. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Normal_curvature&oldid=48010
This article was adapted from an original article by D.D. Sokolov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article