Namespaces
Variants
Actions

Difference between revisions of "Non-linear integral equation"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
n0671401.png
 +
$#A+1 = 32 n = 0
 +
$#C+1 = 32 : ~/encyclopedia/old_files/data/N067/N.0607140 Non\AAhlinear integral equation
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
An [[Integral equation|integral equation]] containing the unknown function non-linearly. Below the basic classes of non-linear integral equations that occur frequently in the study of various applied problems are quoted; their theory is, to a certain extent, fairly well developed.
 
An [[Integral equation|integral equation]] containing the unknown function non-linearly. Below the basic classes of non-linear integral equations that occur frequently in the study of various applied problems are quoted; their theory is, to a certain extent, fairly well developed.
  
 
An important example is the [[Urysohn equation|Urysohn equation]]
 
An important example is the [[Urysohn equation|Urysohn equation]]
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067140/n0671401.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
$$ \tag{1 }
 +
\phi ( x)  = \lambda
 +
\int\limits _  \Omega
 +
K [ x , s , \phi ( s) ]  ds ,\ \
 +
x \in \Omega ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067140/n0671402.png" /> is a closed bounded set in a finite-dimensional Euclidean space, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067140/n0671403.png" /> is a given function, the so-called kernel, which is defined for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067140/n0671404.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067140/n0671405.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067140/n0671406.png" /> is a numerical parameter, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067140/n0671407.png" /> is the unknown function.
+
where $  \Omega $
 +
is a closed bounded set in a finite-dimensional Euclidean space, $  K [ x , s , t ] $
 +
is a given function, the so-called kernel, which is defined for $  x , s \in \Omega $,
 +
$  - \infty < t < \infty $,  
 +
$  \lambda $
 +
is a numerical parameter, and $  \phi $
 +
is the unknown function.
  
P.S. Urysohn (see [[#References|[2]]]) made, under certain assumptions, a complete investigation of the spectrum of the eigen values of equations (1) admitting positive eigen functions. He showed that positive eigen functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067140/n0671408.png" /> correspond to values <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067140/n0671409.png" /> only in a certain interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067140/n06714010.png" /> and that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067140/n06714011.png" /> is a monotone increasing function of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067140/n06714012.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067140/n06714013.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067140/n06714014.png" />.
+
P.S. Urysohn (see [[#References|[2]]]) made, under certain assumptions, a complete investigation of the spectrum of the eigen values of equations (1) admitting positive eigen functions. He showed that positive eigen functions $  \phi ( x , \lambda ) $
 +
correspond to values $  \lambda $
 +
only in a certain interval $  ( \alpha , \beta ) $
 +
and that $  \phi ( x , \lambda ) $
 +
is a monotone increasing function of $  \lambda $
 +
with $  \phi ( x , \alpha ) = 0 $
 +
and $  \phi ( x , \beta ) = \infty $.
  
 
A special case of an Urysohn equation is the [[Hammerstein equation|Hammerstein equation]]
 
A special case of an Urysohn equation is the [[Hammerstein equation|Hammerstein equation]]
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067140/n06714015.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$ \tag{2 }
 +
\phi ( x)  = \lambda
 +
\int\limits _  \Omega
 +
K ( x , s ) f [ s , \phi ( s) ]  ds ,\ \
 +
x \in \Omega ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067140/n06714016.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067140/n06714017.png" /> are known functions. Existence and uniqueness theorems were first established by A. Hammerstein (see [[#References|[9]]]). He investigated equations (2) under the assumption that the real-valued function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067140/n06714018.png" /> is jointly continuous in its arguments and that the linear integral operator generated by the kernel <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067140/n06714019.png" /> is self-adjoint in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067140/n06714020.png" />, positive, and acts compactly from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067140/n06714021.png" /> into the space of continuous functions.
+
where $  K ( x , s ) $
 +
and $  f ( s , t ) $
 +
are known functions. Existence and uniqueness theorems were first established by A. Hammerstein (see [[#References|[9]]]). He investigated equations (2) under the assumption that the real-valued function $  f ( s , t ) $
 +
is jointly continuous in its arguments and that the linear integral operator generated by the kernel $  K $
 +
is self-adjoint in $  L _ {2} ( \Omega ) $,  
 +
positive, and acts compactly from $  L _ {2} ( \Omega ) $
 +
into the space of continuous functions.
  
 
Another example of a non-linear integral equation is the [[Lyapunov–Schmidt equation|Lyapunov–Schmidt equation]]
 
Another example of a non-linear integral equation is the [[Lyapunov–Schmidt equation|Lyapunov–Schmidt equation]]
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067140/n06714022.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3)</td></tr></table>
+
$$ \tag{3 }
 +
\sum _ {\alpha , \beta } \
 +
\int\limits _  \Omega  \dots \int\limits _  \Omega
 +
K _ {\alpha , \beta }  ( x , s _ {1} \dots s _ {i} ) \times
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067140/n06714023.png" /></td> </tr></table>
+
$$
 +
\times
 +
\phi ^ {\alpha _ {0} } ( x )
 +
\phi ^ {\alpha _ {1} } ( s _ {1} ) \dots \phi ^ {\alpha _ {i} } ( s _ {i} ) \times
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067140/n06714024.png" /></td> </tr></table>
+
$$
 +
\times
 +
v ^ {\beta _ {0} } ( x) v ^ {\beta _ {1} } ( s _ {1} ) \dots
 +
v ^ {\beta _ {i} } ( s _ {i} )  d s _ {1} \dots d s _ {i}  = 0 ,\  x \in \Omega ,
 +
$$
  
in which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067140/n06714025.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067140/n06714026.png" /> are given functions, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067140/n06714027.png" /> is the unknown function, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067140/n06714028.png" /> is fixed, and the summation is over all vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067140/n06714029.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067140/n06714030.png" /> with non-negative integer components. The left-hand side of (3) is called an integral power series in the two functional arguments <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067140/n06714031.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067140/n06714032.png" />.
+
in which $  K _ {\alpha , \beta }  $
 +
and $  v $
 +
are given functions, $  \phi $
 +
is the unknown function, $  i $
 +
is fixed, and the summation is over all vectors $  \alpha = ( \alpha _ {0} \dots \alpha _ {i} ) $
 +
and $  \beta = ( \beta _ {0} \dots \beta _ {i} ) $
 +
with non-negative integer components. The left-hand side of (3) is called an integral power series in the two functional arguments $  v $
 +
and $  \phi $.
  
 
Equations of type (3) were first considered by A.M. Lyapunov (see [[#References|[1]]]) and later, in a more general form, by E. Schmidt (see [[#References|[8]]]). In their research the foundations were laid of the bifurcation theory of non-linear integral equations, which aims at solving the following problem. Suppose that one searches for a solution of a non-linear problem depending on certain parameters and that for some of their values the solution may bifurcate. There arises the tasks of finding the solution itself and those parameter values for which it bifurcates (branches), the number of branches, and the representation of each branch as a function of the parameters (see [[#References|[6]]]).
 
Equations of type (3) were first considered by A.M. Lyapunov (see [[#References|[1]]]) and later, in a more general form, by E. Schmidt (see [[#References|[8]]]). In their research the foundations were laid of the bifurcation theory of non-linear integral equations, which aims at solving the following problem. Suppose that one searches for a solution of a non-linear problem depending on certain parameters and that for some of their values the solution may bifurcate. There arises the tasks of finding the solution itself and those parameter values for which it bifurcates (branches), the number of branches, and the representation of each branch as a function of the parameters (see [[#References|[6]]]).
Line 31: Line 90:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.M. Lyapunov,  ''Zap. Akad. Nauk. St. Petersburg''  (1906)  pp. 1–225</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  P.S. Urysohn,  ''Mat. Sb.'' , '''31'''  (1923)  pp. 236–255</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  M.M. Vainberg,  "Variational methods for the study of nonlinear operators" , Holden-Day  (1964)  (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  M.A. Krasnosel'skii,  "Topological methods in the theory of nonlinear integral equations" , Pergamon  (1964)  (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  M.A. Krasnosel'skii,  et al.,  "Integral operators in spaces of summable functions" , Noordhoff  (1976)  (Translated from Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  M.M. Vainberg,  V.A. Trenogin,  "Theory of branching of solutions of non-linear equations" , Noordhoff  (1974)  (Translated from Russian)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  M.M. Vainberg,  "Variational methods and methods of nonlinear operators in the theory of nonlinear equations" , Wiley  (1973)  (Translated from Russian)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top">  E. Schmidt,  "Zur Theorie der linearen und nichtlinearen Integralgleichungen III"  ''Math. Ann.'' , '''65'''  (1908)  pp. 370–399</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top">  A. Hammerstein,  "Nichtlineare Integralgleichungen nebst Anwendungen"  ''Acta Math.'' , '''54'''  (1930)  pp. 117–176</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.M. Lyapunov,  ''Zap. Akad. Nauk. St. Petersburg''  (1906)  pp. 1–225</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  P.S. Urysohn,  ''Mat. Sb.'' , '''31'''  (1923)  pp. 236–255</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  M.M. Vainberg,  "Variational methods for the study of nonlinear operators" , Holden-Day  (1964)  (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  M.A. Krasnosel'skii,  "Topological methods in the theory of nonlinear integral equations" , Pergamon  (1964)  (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  M.A. Krasnosel'skii,  et al.,  "Integral operators in spaces of summable functions" , Noordhoff  (1976)  (Translated from Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  M.M. Vainberg,  V.A. Trenogin,  "Theory of branching of solutions of non-linear equations" , Noordhoff  (1974)  (Translated from Russian)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  M.M. Vainberg,  "Variational methods and methods of nonlinear operators in the theory of nonlinear equations" , Wiley  (1973)  (Translated from Russian)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top">  E. Schmidt,  "Zur Theorie der linearen und nichtlinearen Integralgleichungen III"  ''Math. Ann.'' , '''65'''  (1908)  pp. 370–399</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top">  A. Hammerstein,  "Nichtlineare Integralgleichungen nebst Anwendungen"  ''Acta Math.'' , '''54'''  (1930)  pp. 117–176</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  P.P. Zabreiko (ed.)  A.I. Koshelev (ed.)  M.A. Krasnoselskii (ed.)  S.G. Mikhlin (ed.)  L.S. Rakovshchik (ed.)  V.Ya. Stet'senko (ed.)  T.O. Shaposhnikova (ed.)  R.S. Anderssen (ed.) , ''Integral equations - a reference text'' , Noordhoff  (1975)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  P.P. Zabreiko (ed.)  A.I. Koshelev (ed.)  M.A. Krasnoselskii (ed.)  S.G. Mikhlin (ed.)  L.S. Rakovshchik (ed.)  V.Ya. Stet'senko (ed.)  T.O. Shaposhnikova (ed.)  R.S. Anderssen (ed.) , ''Integral equations - a reference text'' , Noordhoff  (1975)  (Translated from Russian)</TD></TR></table>

Latest revision as of 08:03, 6 June 2020


An integral equation containing the unknown function non-linearly. Below the basic classes of non-linear integral equations that occur frequently in the study of various applied problems are quoted; their theory is, to a certain extent, fairly well developed.

An important example is the Urysohn equation

$$ \tag{1 } \phi ( x) = \lambda \int\limits _ \Omega K [ x , s , \phi ( s) ] ds ,\ \ x \in \Omega , $$

where $ \Omega $ is a closed bounded set in a finite-dimensional Euclidean space, $ K [ x , s , t ] $ is a given function, the so-called kernel, which is defined for $ x , s \in \Omega $, $ - \infty < t < \infty $, $ \lambda $ is a numerical parameter, and $ \phi $ is the unknown function.

P.S. Urysohn (see [2]) made, under certain assumptions, a complete investigation of the spectrum of the eigen values of equations (1) admitting positive eigen functions. He showed that positive eigen functions $ \phi ( x , \lambda ) $ correspond to values $ \lambda $ only in a certain interval $ ( \alpha , \beta ) $ and that $ \phi ( x , \lambda ) $ is a monotone increasing function of $ \lambda $ with $ \phi ( x , \alpha ) = 0 $ and $ \phi ( x , \beta ) = \infty $.

A special case of an Urysohn equation is the Hammerstein equation

$$ \tag{2 } \phi ( x) = \lambda \int\limits _ \Omega K ( x , s ) f [ s , \phi ( s) ] ds ,\ \ x \in \Omega , $$

where $ K ( x , s ) $ and $ f ( s , t ) $ are known functions. Existence and uniqueness theorems were first established by A. Hammerstein (see [9]). He investigated equations (2) under the assumption that the real-valued function $ f ( s , t ) $ is jointly continuous in its arguments and that the linear integral operator generated by the kernel $ K $ is self-adjoint in $ L _ {2} ( \Omega ) $, positive, and acts compactly from $ L _ {2} ( \Omega ) $ into the space of continuous functions.

Another example of a non-linear integral equation is the Lyapunov–Schmidt equation

$$ \tag{3 } \sum _ {\alpha , \beta } \ \int\limits _ \Omega \dots \int\limits _ \Omega K _ {\alpha , \beta } ( x , s _ {1} \dots s _ {i} ) \times $$

$$ \times \phi ^ {\alpha _ {0} } ( x ) \phi ^ {\alpha _ {1} } ( s _ {1} ) \dots \phi ^ {\alpha _ {i} } ( s _ {i} ) \times $$

$$ \times v ^ {\beta _ {0} } ( x) v ^ {\beta _ {1} } ( s _ {1} ) \dots v ^ {\beta _ {i} } ( s _ {i} ) d s _ {1} \dots d s _ {i} = 0 ,\ x \in \Omega , $$

in which $ K _ {\alpha , \beta } $ and $ v $ are given functions, $ \phi $ is the unknown function, $ i $ is fixed, and the summation is over all vectors $ \alpha = ( \alpha _ {0} \dots \alpha _ {i} ) $ and $ \beta = ( \beta _ {0} \dots \beta _ {i} ) $ with non-negative integer components. The left-hand side of (3) is called an integral power series in the two functional arguments $ v $ and $ \phi $.

Equations of type (3) were first considered by A.M. Lyapunov (see [1]) and later, in a more general form, by E. Schmidt (see [8]). In their research the foundations were laid of the bifurcation theory of non-linear integral equations, which aims at solving the following problem. Suppose that one searches for a solution of a non-linear problem depending on certain parameters and that for some of their values the solution may bifurcate. There arises the tasks of finding the solution itself and those parameter values for which it bifurcates (branches), the number of branches, and the representation of each branch as a function of the parameters (see [6]).

The theory of non-linear integral equations is part of the general theory of non-linear operator equations. Namely, integral equations can be regarded as specific illustrations of the corresponding operator equations. For this purpose one has to clarify general properties (continuity, compactness, etc.) of the concrete integral operators occurring in the equation.

References

[1] A.M. Lyapunov, Zap. Akad. Nauk. St. Petersburg (1906) pp. 1–225
[2] P.S. Urysohn, Mat. Sb. , 31 (1923) pp. 236–255
[3] M.M. Vainberg, "Variational methods for the study of nonlinear operators" , Holden-Day (1964) (Translated from Russian)
[4] M.A. Krasnosel'skii, "Topological methods in the theory of nonlinear integral equations" , Pergamon (1964) (Translated from Russian)
[5] M.A. Krasnosel'skii, et al., "Integral operators in spaces of summable functions" , Noordhoff (1976) (Translated from Russian)
[6] M.M. Vainberg, V.A. Trenogin, "Theory of branching of solutions of non-linear equations" , Noordhoff (1974) (Translated from Russian)
[7] M.M. Vainberg, "Variational methods and methods of nonlinear operators in the theory of nonlinear equations" , Wiley (1973) (Translated from Russian)
[8] E. Schmidt, "Zur Theorie der linearen und nichtlinearen Integralgleichungen III" Math. Ann. , 65 (1908) pp. 370–399
[9] A. Hammerstein, "Nichtlineare Integralgleichungen nebst Anwendungen" Acta Math. , 54 (1930) pp. 117–176

Comments

References

[a1] P.P. Zabreiko (ed.) A.I. Koshelev (ed.) M.A. Krasnoselskii (ed.) S.G. Mikhlin (ed.) L.S. Rakovshchik (ed.) V.Ya. Stet'senko (ed.) T.O. Shaposhnikova (ed.) R.S. Anderssen (ed.) , Integral equations - a reference text , Noordhoff (1975) (Translated from Russian)
How to Cite This Entry:
Non-linear integral equation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Non-linear_integral_equation&oldid=47995
This article was adapted from an original article by B.V. Khvedelidze (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article