Namespaces
Variants
Actions

Linear functional

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 46Exx, Secondary: 47Axx [MSN][ZBL]


A linear functional, or a linear form, on a vector space $L$ over a field $k$ is a mapping $f:L\to k$ such that $$\def\l{\lambda} f(x+y) = f(x)+f(y), f(\l x) = \l f(x),$$ for all $x,y\in L$, $\l \in k$. The concept of a linear functional, as an important special case of the concept of a linear operator, is one of the main concepts in linear algebra and plays a significant role in analysis.

On the set $L^\#$ of linear functionals on $L$ the operations of addition and multiplication by a scalar are defined pointwise by the formulas

$$(f+g)(x) = f(x) + g(x), (\l f)(x) = \l f(x),$$

$$f,g\in L^\#,\quad x\in L,\quad \l\in k.$$ They specify in $L^\#$ a vector space structure over $k$, the dual space or linear dual of $L$.

The kernel of a linear functional is the subspace $\ker f = \{x\in L: f(x)=0\}$. If $f\ne 0 \in L^\#$ (that is, $f(x) \not\equiv 0\in k$), then $\ker f$ is a hyperplane in $L$. Linear functionals with the same kernel are proportional.

If $\{e_\nu : \nu \in \def\L{\Lambda} \L\}$ is a basis of $L$, then for $$x=\sum_{i=1}^n\l_{\nu_i}e_{\nu_i},\quad \l_{\nu_i}\in k,\quad f(x)=\sum_{i=1}^n\l_{\nu_i}f(e_{\nu_i}).$$ The correspondence $f\to \{f(x_\nu): \nu\in\L\}$ is an isomorphism of $L^\#$ onto $k^\L$. Corollary: $L$ is isomorphic to $L^\#$ if and only if it is finite dimensional. On transition to a new basis in $L$ the elements $f(e_\nu)\in k$ are transformed by the same formulas as the basis vectors.

The operator $Q_L:L\to (L^\#)^\#$ defined by $Q_Lx(f) = f(x)$ is injective. It is an isomorphism if and only if $L$ is finite dimensional. This isomorphism, in contrast to the isomorphism between $L$ and $L^\#$, is natural, i.e. functorial (cf. Functorial morphism).

A linear functional on a locally convex space, in particular on a normed space, is an important object of study in functional analysis. Every continuous (as a mapping on topological spaces) linear functional $f$ on a locally convex space $E$ is bounded (cf. Bounded operator), that is, $$ \sup_{x\in M} |f(x)| < \infty$$ for all bounded $M\subset E$. If $E$ is a normed space, the converse is also true; both properties are then equivalent to the finiteness of the number $$\|f\| = \sup \{| f(x) | : \|x\|\le 1\}.$$ The continuous linear functionals on a locally convex space $E$ form a subspace $E^*$ of $E^\#$, which is said to be the dual of $E$. In $E^*$ one considers different topologies, including the weak and strong topologies, which correspond, respectively, to pointwise and uniform convergence on bounded sets. If $E$ is a normed space, then $E^*$ is a Banach space with respect to the norm $\|f\|$ and the corresponding topology coincides with the strong topology. The unit ball $\{f:\|f\|\le 1\}$, considered in the weak topology, is compact.

The Hahn–Banach theorem has important applications in analysis; one formulation of it is as follows: If $\|.\|$ is a pre-norm on a vector space $E$ and if $f_0$ is a linear functional defined on a subspace $E_0$ of $E$ such that $|f_0(x)|\le \|x\|$ for all $x\in E_0$, then $f_0$ can be extended to the whole of $E$, preserving linearity and the given bound. Corollary: Any continuous linear functional defined on a subspace $E_0$ of a locally convex space $E$ can be extended to a continuous linear functional on $E$, and if $E$ is a normed space, then the norm is preserved. Hence, for every $x\in E$, $x\ne 0$, there is an $f\in E$ with $f(x)\ne 0$.

Let $E$ be a normed space and suppose that $E^*$, and then $(E^*)^*$, are taken with the corresponding norms. Then the operator $$R_E:E\to (E^*)^*,\quad R_E x(F) = f(x)$$ is an isometric imbedding. If under this imbedding $E$ coincides with $(E^*)^*$, then $E$, which is necessarily complete, is said to be a reflexive space. For example, $L_p[a,b]$ and $l_p$, $1\le p<\infty$, are reflexive if and only if $p>1$. There is a similar concept of reflexivity for general locally convex spaces.

For many locally convex spaces, all linear functionals have been described. For example, the adjoint of a Hilbert space $H$ is $\{f:f(x)=(x,x_0) \textrm{ for a fixed } x_0\in H\}$. The adjoint of $C[a,b]$ is $\{f:f(x) = \int_a^b x(t)d\mu(t) \textrm{ for a fixed function of bounded variation } \mu(t)\}$.

References

[Bo] N. Bourbaki, "Elements of mathematics. Algebra: Modules. Rings. Forms", 2, Addison-Wesley (1975) pp. Chapt.4;5;6 (Translated from French) MR0049861
[KoFo] A.N. Kolmogorov, S.V. Fomin, "Elements of the theory of functions and functional analysis", 1–2, Graylock (1957–1961) (Translated from Russian) MR0085462
[TaLa] A.E. Taylor, D.C. Lay, "Introduction to functional analysis", Wiley (1980) MR0564653 Zbl 0501.46003
How to Cite This Entry:
Linear functional. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Linear_functional&oldid=51214
This article was adapted from an original article by A.Ya. Khelemskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article