Namespaces
Variants
Actions

Difference between revisions of "Jordan decomposition (of an endomorphism)"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (MR/ZBL numbers added)
m (fixing spaces)
 
(4 intermediate revisions by 3 users not shown)
Line 1: Line 1:
The Jordan decomposition of a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j0543101.png" /> of bounded variation is the representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j0543102.png" /> in the form
+
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j0543103.png" /></td> </tr></table>
+
The Jordan decomposition of an endomorphism  $  g $
 +
of a finite-dimensional vector space is the representation of  $  g $
 +
as the sum of a semi-simple and a nilpotent endomorphism that commute with each other: $  g = g _{s} + g _{n} $.
 +
The endomorphisms  $  g _{s} $
 +
and  $  g _{n} $
 +
are said to be the semi-simple and the nilpotent component of the Jordan decomposition of  $  g $.
 +
This decomposition is called the additive Jordan decomposition. (A semi-simple endomorphism is one having a basis of eigen vectors for some extension of the ground field, a nilpotent endomorphism is one some power of which is the zero endomorphism.) If in some basis of the space the matrix  $  \| a _{ij} \| $
 +
of  $  g $
 +
is a [[Jordan matrix|Jordan matrix]] (i.e., a matrix in Jordan canonical form), and  $  t $
 +
is an endomorphism such that the matrix  $  \| b _{ij} \| $
 +
of  $  t $
 +
in the same basis has  $  b _{ij} = 0 $
 +
for  $  i \neq j $
 +
and  $  b _{ii} = a _{ii} $
 +
for all  $  i $,
 +
then
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j0543104.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j0543105.png" /> are monotone increasing functions. A Jordan decomposition is also the representation of a signed measure or a [[Charge|charge]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j0543106.png" /> on measurable sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j0543107.png" /> as a difference of measures,
+
$$
 +
g \  = \  t + ( g - t )
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j0543108.png" /></td> </tr></table>
+
is the Jordan decomposition of  $  g $
 +
with  $  g _{s} = t $
 +
and  $  g _{n} = g -t $.
  
where at least one of the measures (cf. [[Measure|Measure]]) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j0543109.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431010.png" /> is finite. Established by C. Jordan.
+
The Jordan decomposition exists and is unique for any endomorphism  $  g $
 +
of a vector space  $  V $
 +
over an algebraically closed field  $  K $.
 +
Moreover,  $  g _{s} = P (g) $
 +
and  $  g _{n} = Q (g) $
 +
for some polynomials  $  P $
 +
and $  Q $
 +
over  $  K $ (depending on  $  g $)
 +
with constant terms equal to zero. If  $  W $
 +
is a  $  g $-invariant subspace of  $  V $,
 +
then  $  W $
 +
is invariant under  $  g _{s} $
 +
and  $  g _{n} $,
 +
and
  
====References====
+
$$
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> C. Jordan, "Cours d'analyse" , '''1''' , Gauthier-Villars (1893) {{MR|1188188}} {{MR|1188187}} {{MR|1188186}} {{MR|0710200}} {{ZBL|}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> P.R. Halmos, "Measure theory" , v. Nostrand (1950) {{MR|0033869}} {{ZBL|0040.16802}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> I.P. Natanson, "Theorie der Funktionen einer reellen Veränderlichen" , H. Deutsch , Frankfurt a.M. (1961) (Translated from Russian) {{MR|0640867}} {{MR|0409747}} {{MR|0259033}} {{MR|0063424}} {{ZBL|0097.26601}} </TD></TR></table>
+
g \mid  _{W} = \
 +
\left . g _{s} \right | _{W} + \left . g _{n} \right | _{W} $$
  
''M.I. Voitsekhovskii''
+
is the Jordan decomposition of  $  g \mid  _{W} $ (here  $  \mid  _{W} $
 +
means restriction to  $  W $).  
 +
If  $  k $
 +
is a subfield of  $  K $
 +
and  $  g $
 +
is rational over  $  k $ (with respect to some  $  k $-structure on  $  V $),
 +
then  $  g _{s} $
 +
and  $  g _{n} $
 +
need not be rational over  $  k $;
 +
one may only assert that  $  g _{s} $
 +
and  $  g _{n} $
 +
are rational over  $  k ^ {p ^ {- \infty}} $,
 +
where  $  p $
 +
is the characteristic exponent of  $  k $ (for  $  p = 1 $,
 +
$  k ^ {p ^ {- \infty}} $
 +
is  $  k $,
 +
and for  $  p > 1 $
 +
it is the set of all elements of  $  K $
 +
that are [[Purely inseparable extension|purely inseparable]] over  $  k $.
  
the Jordan decomposition of an endomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431011.png" /> of a finite-dimensional vector space is the representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431012.png" /> as the sum of a semi-simple and a nilpotent endomorphism that commute with each other: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431013.png" />. The endomorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431014.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431015.png" /> are said to be the semi-simple and the nilpotent component of the Jordan decomposition of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431016.png" />. This decomposition is called the additive Jordan decomposition. (A semi-simple endomorphism is one having a basis of eigen vectors for some extension of the ground field, a nilpotent endomorphism is one some power of which is the zero endomorphism.) If in some basis of the space the matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431017.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431018.png" /> is a [[Jordan matrix|Jordan matrix]] (i.e., a matrix in Jordan canonical form), and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431019.png" /> is an endomorphism such that the matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431020.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431021.png" /> in the same basis has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431022.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431023.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431024.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431025.png" />, then
+
If  $  g $
 +
is an automorphism of $  V $,  
 +
then  $  g _{s} $
 +
is also an automorphism of $  V $,  
 +
and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431026.png" /></td> </tr></table>
+
$$
 +
g = g _{s} g _{u} \  = \  g _{u} g _{s} ,
 +
$$
  
is the Jordan decomposition of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431027.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431028.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431029.png" />.
+
where  $  g _{u} = 1 _{V} + g _ s^{-1} g _{n} $
 
+
and $  1 _{V} $
The Jordan decomposition exists and is unique for any endomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431030.png" /> of a vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431031.png" /> over an algebraically closed field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431032.png" />. Moreover, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431033.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431034.png" /> for some polynomials <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431035.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431036.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431037.png" /> (depending on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431038.png" />) with constant terms equal to zero. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431039.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431040.png" />-invariant subspace of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431041.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431042.png" /> is invariant under <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431043.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431044.png" />, and
+
is the identity automorphism of $  V $.  
 
+
The automorphism $  g _{u} $
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431045.png" /></td> </tr></table>
+
is unipotent, that is, all its eigen values are equal to one. Every representation of $  g $
 
+
as a product of commuting semi-simple and unipotent automorphisms coincides with the representation $  g = g _{s} g _{u} = g _{u} g _{s} $
is the Jordan decomposition of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431046.png" /> (here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431047.png" /> means restriction to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431048.png" />). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431049.png" /> is a subfield of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431050.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431051.png" /> is rational over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431052.png" /> (with respect to some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431053.png" />-structure on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431054.png" />), then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431055.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431056.png" /> need not be rational over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431057.png" />; one may only assert that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431058.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431059.png" /> are rational over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431060.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431061.png" /> is the characteristic exponent of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431062.png" /> (for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431063.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431064.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431065.png" />, and for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431066.png" /> it is the set of all elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431067.png" /> that are purely inseparable over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431068.png" />, cf. [[Separable extension|Separable extension]]).
+
already described. This representation is called the multiplicative Jordan decomposition of the automorphism $  g $,  
 
+
and $  g _{s} $
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431069.png" /> is an automorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431070.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431071.png" /> is also an automorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431072.png" />, and
+
and $  g _{u} $
 
+
are called the semi-simple and unipotent components of $  g $.  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431073.png" /></td> </tr></table>
+
If $  g $
 
+
is rational over $  k $,  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431074.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431075.png" /> is the identity automorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431076.png" />. The automorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431077.png" /> is unipotent, that is, all its eigen values are equal to one. Every representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431078.png" /> as a product of commuting semi-simple and unipotent automorphisms coincides with the representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431079.png" /> already described. This representation is called the multiplicative Jordan decomposition of the automorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431080.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431081.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431082.png" /> are called the semi-simple and unipotent components of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431083.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431084.png" /> is rational over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431085.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431086.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431087.png" /> are rational over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431088.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431089.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431090.png" />-invariant subspace of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431091.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431092.png" /> is invariant under <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431093.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431094.png" />, and
+
then $  g _{s} $
 +
and $  g _{u} $
 +
are rational over $  k ^ {p ^ {- \infty}} $.  
 +
If $  W $
 +
is a $  g $-invariant subspace of $  V $,  
 +
then $  W $
 +
is invariant under $  g _{s} $
 +
and $  g _{u} $,  
 +
and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431095.png" /></td> </tr></table>
+
$$
 +
g \mid  _{W} \  = \
 +
\left . g _{s} \right | _{W} \left . g _{u} \right | _{W}  $$
  
is the multiplicative Jordan decomposition of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431096.png" />.
+
is the multiplicative Jordan decomposition of $  g \mid  _{W} $.
  
The concept of a Jordan decomposition can be generalized to locally finite endomorphisms of an infinite-dimensional vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431097.png" />, that is, endomorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431098.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j05431099.png" /> is generated by finite-dimensional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310100.png" />-invariant subspaces. For such <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310101.png" />, there is one and only one decomposition of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310102.png" /> as a sum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310103.png" /> (and in the case of an automorphism, one and only one decomposition of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310104.png" /> as a product <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310105.png" />) of commuting locally finite semi-simple and nilpotent endomorphisms (semi-simple and unipotent automorphisms, respectively), that is, endomorphisms (automorphisms) such that every finite-dimensional <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310106.png" />-invariant subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310107.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310108.png" /> is invariant under <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310109.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310110.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310111.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310112.png" />, respectively) and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310113.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310114.png" />, respectively) is the Jordan decomposition of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310115.png" />.
+
The concept of a Jordan decomposition can be generalized to locally finite endomorphisms of an infinite-dimensional vector space $  V $,  
 +
that is, endomorphisms $  g $
 +
such that $  V $
 +
is generated by finite-dimensional $  g $-invariant subspaces. For such $  g $,  
 +
there is one and only one decomposition of $  g $
 +
as a sum $  g = g _{s} + g _{n} $ (and in the case of an automorphism, one and only one decomposition of $  g $
 +
as a product $  g _{s} g _{u} $)  
 +
of commuting locally finite semi-simple and nilpotent endomorphisms (semi-simple and unipotent automorphisms, respectively), that is, endomorphisms (automorphisms) such that every finite-dimensional $  g $-invariant subspace $  W $
 +
of $  V $
 +
is invariant under $  g _{s} $
 +
and $  g _{n} $ ($  g _{s} $
 +
and $  g _{u} $,  
 +
respectively) and $  g | _{W} = g _{s} \mid  _{W} + g _{n} | _{W} $ ($  g \mid  _{W} = g _{s} | _{W} g _{u} | _{W} $,  
 +
respectively) is the Jordan decomposition of $  g \mid  _{W} $.
  
This extension of the concept of a Jordan decomposition allows one to introduce the concept of a Jordan decomposition in algebraic groups and algebras. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310116.png" /> be an affine algebraic group over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310117.png" /> (cf. [[Affine group|Affine group]]), let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310118.png" /> be its [[Lie algebra|Lie algebra]], let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310119.png" /> be the representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310120.png" /> in the group of automorphisms of the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310121.png" /> of regular functions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310122.png" /> defined by right translations, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310123.png" /> be its derivation. For arbitrary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310124.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310125.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310126.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310127.png" />, the endomorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310128.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310129.png" /> of the vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310130.png" /> are locally finite, so that one can speak of their Jordan decompositions:
+
This extension of the concept of a Jordan decomposition allows one to introduce the concept of a Jordan decomposition in algebraic groups and algebras. Let $  G $
 +
be an affine algebraic group over $  K $ (cf. [[Affine group|Affine group]]), let $  {\mathcal G} $
 +
be its [[Lie algebra|Lie algebra]], let $  \rho $
 +
be the representation of $  G $
 +
in the group of automorphisms of the algebra $  K [ G ] $
 +
of regular functions on $  G $
 +
defined by right translations, and let $  d \rho $
 +
be its derivation. For arbitrary $  g $
 +
in $  G $
 +
and $  X $
 +
in $  {\mathcal G} $,  
 +
the endomorphisms $  \rho (g) $
 +
and $  d \rho (X) $
 +
of the vector space $  K [ G ] $
 +
are locally finite, so that one can speak of their Jordan decompositions:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310131.png" /></td> </tr></table>
+
$$
 +
\rho (g) \  = \  \rho (g) _{s} \rho (g) _{u}  $$
  
 
and
 
and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310132.png" /></td> </tr></table>
+
$$
 +
d \rho (X) \  = \  d \rho (X) _{s} + d \rho (X) _{n} .
 +
$$
  
One of the important results in the theory of algebraic groups is that the Jordan decomposition just indicated is realized by the use of elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310133.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310134.png" />, respectively. More exactly, there exist unique elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310135.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310136.png" /> such that
+
One of the important results in the theory of algebraic groups is that the Jordan decomposition just indicated is realized by the use of elements of $  G $
 +
and $  {\mathcal G} $,  
 +
respectively. More exactly, there exist unique elements $  g _{s} ,\  g _{u} \in G $
 +
and $  X _{s} ,\  X _{n} \in {\mathcal G} $
 +
such that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310137.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
$$ \tag{1}
 +
g \  = \  g _{s} g _{u} \  = \  g _{u} g _{s} ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310138.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$ \tag{2}
 +
X \  = \  X _{s} + X _{n} ,\ \  [ X _{s} ,\  X _{n} ] \  = 0 ,
 +
$$
  
 
and
 
and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310139.png" /></td> </tr></table>
+
$$
 +
\rho ( g _{s} ) \  = \  \rho (g) _{s} ,\ \
 +
\rho ( g _{u} ) \  = \  \rho (g) _{u} ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310140.png" /></td> </tr></table>
+
$$
 +
d \rho ( X _{s} ) \  = \  ( d \rho (X) ) _{s} ,\ \  d \rho ( X _{n} ) \  = \  ( d \rho (X) ) _{n} .
 +
$$
  
The decomposition (1) is called the Jordan decomposition in the algebraic group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310141.png" />, and (2) the Jordan decomposition in the algebraic Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310142.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310143.png" /> is defined over a subfield <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310144.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310145.png" /> and the element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310146.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310147.png" />, respectively) is rational over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310148.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310149.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310150.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310151.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310152.png" />, respectively) are rational over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310153.png" />. Moreover, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310154.png" /> is realized as a closed subgroup of the general linear group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310155.png" /> of automorphisms of some finite-dimensional vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310156.png" /> (and thus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310157.png" /> is realized as a subalgebra of the Lie algebra of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310158.png" />), then the Jordan decomposition (1) of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310159.png" /> coincides with the multiplicative decomposition introduced above for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310160.png" />, while the decomposition (2) for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310161.png" /> coincides with the additive Jordan decomposition for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310162.png" /> (considered as endomorphisms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310163.png" />). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310164.png" /> is a rational homomorphism of affine algebraic groups and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310165.png" /> is the corresponding homomorphism of their Lie algebras, then
+
The decomposition (1) is called the Jordan decomposition in the algebraic group $  G $,  
 +
and (2) the Jordan decomposition in the algebraic Lie algebra $  {\mathcal G} $.  
 +
If $  G $
 +
is defined over a subfield $  k $
 +
of $  K $
 +
and the element $  g \in G $ ($  X \in {\mathcal G} $,  
 +
respectively) is rational over $  k $,  
 +
then $  g _{s} $
 +
and $  g _{u} $ ($  X _{s} $
 +
and $  X _{n} $,  
 +
respectively) are rational over $  k ^ {p ^ {- \infty}} $.  
 +
Moreover, if $  G $
 +
is realized as a closed subgroup of the general linear group $  \mathop{\rm GL}\nolimits (V) $
 +
of automorphisms of some finite-dimensional vector space $  V $ (and thus $  {\mathcal G} $
 +
is realized as a subalgebra of the Lie algebra of $  \mathop{\rm GL}\nolimits (V) $),  
 +
then the Jordan decomposition (1) of $  g \in G $
 +
coincides with the multiplicative decomposition introduced above for $  g $,  
 +
while the decomposition (2) for $  X \in {\mathcal G} $
 +
coincides with the additive Jordan decomposition for $  X $ (considered as endomorphisms of $  V $).  
 +
If $  \phi : \  G _{1} \rightarrow G _{2} $
 +
is a rational homomorphism of affine algebraic groups and $  d \phi : \  {\mathcal G} _{1} \rightarrow {\mathcal G} _{2} $
 +
is the corresponding homomorphism of their Lie algebras, then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310166.png" /></td> </tr></table>
+
$$
 +
\phi ( g _{s} ) \  = \  \phi (g) _{s} ,\ \
 +
\phi ( g _{u} ) \  = \  \phi (g) _{u} ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310167.png" /></td> </tr></table>
+
$$
 +
d \phi ( X _{s} ) \  = \  ( d \phi (X) ) _{s} ,\ \  d \phi ( X _{n} ) \  = \  ( d \phi (X) ) _{n}  $$
  
for arbitrary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310168.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310169.png" />.
+
for arbitrary $  g \in G _{1} $,  
 +
$  X \in {\mathcal G} _{1} $.
  
The concept of a Jordan decomposition in algebraic groups and algebraic Lie algebras allows one to introduce the definitions of a semi-simple and a unipotent (nilpotent, respectively) element in an arbitrary affine algebraic group (algebraic Lie algebra, respectively). An element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310170.png" /> is said to be semi-simple if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310171.png" />, and unipotent if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310172.png" />; an element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310173.png" /> is said to be semi-simple if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310174.png" /> and nilpotent if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310175.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310176.png" /> is defined over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310177.png" />, then
+
The concept of a Jordan decomposition in algebraic groups and algebraic Lie algebras allows one to introduce the definitions of a semi-simple and a unipotent (nilpotent, respectively) element in an arbitrary affine algebraic group (algebraic Lie algebra, respectively). An element $  g \in G $
 +
is said to be semi-simple if $  g = g _{s} $,  
 +
and unipotent if $  g = g _{u} $;  
 +
an element $  X \in {\mathcal G} $
 +
is said to be semi-simple if $  X = X _{s} $
 +
and nilpotent if $  X = X _{n} $.  
 +
If $  G $
 +
is defined over $  k $,  
 +
then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310178.png" /></td> </tr></table>
+
$$
 +
G _{u} \  = \  \{ {g \in G} : {g = g _ u} \}
 +
$$
  
is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310179.png" />-closed subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310180.png" />, and
+
is a $  k $-closed subset of $  G $,  
 +
and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310181.png" /></td> </tr></table>
+
$$
 +
{\mathcal G} _{n} \  = \  \{ {X \in {\mathcal G}} : {X = X _ n} \}
 +
$$
  
is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310182.png" />-closed subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310183.png" />. In general,
+
is a $  k $-closed subset of $  {\mathcal G} $.  
 +
In general,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310184.png" /></td> </tr></table>
+
$$
 +
G _{s} \  = \  \{ {g \in G} : {g = g _ s} \}
 +
$$
  
is not a closed set, but if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310185.png" /> is commutative, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310186.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310187.png" /> are closed subgroups and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310188.png" />. The sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310189.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/j/j054/j054310/j054310190.png" /> in an arbitrary affine algebraic group are invariant under inner automorphisms, and the study of decompositions of these sets into classes of conjugate elements is a subject of special investigations [[#References|[3]]].
+
is not a closed set, but if $  G $
 +
is commutative, then $  G _{s} $
 +
and $  G _{u} $
 +
are closed subgroups and $  G = G _{s} \times G _{u} $.  
 +
The sets $  G _{s} $
 +
and $  G _{u} $
 +
in an arbitrary affine algebraic group are invariant under inner automorphisms, and the study of decompositions of these sets into classes of conjugate elements is a subject of special investigations [[#References|[3]]].
  
 
====References====
 
====References====
Line 86: Line 244:
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Steinberg, "Conjugacy classes in algebraic groups" , ''Lect. notes in math.'' , '''366''' , Springer (1974) {{MR|0352279}} {{ZBL|0281.20037}} </TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Steinberg, "Conjugacy classes in algebraic groups" , ''Lect. notes in math.'' , '''366''' , Springer (1974) {{MR|0352279}} {{ZBL|0281.20037}} </TD></TR></table>

Latest revision as of 02:51, 25 February 2022


The Jordan decomposition of an endomorphism $ g $ of a finite-dimensional vector space is the representation of $ g $ as the sum of a semi-simple and a nilpotent endomorphism that commute with each other: $ g = g _{s} + g _{n} $. The endomorphisms $ g _{s} $ and $ g _{n} $ are said to be the semi-simple and the nilpotent component of the Jordan decomposition of $ g $. This decomposition is called the additive Jordan decomposition. (A semi-simple endomorphism is one having a basis of eigen vectors for some extension of the ground field, a nilpotent endomorphism is one some power of which is the zero endomorphism.) If in some basis of the space the matrix $ \| a _{ij} \| $ of $ g $ is a Jordan matrix (i.e., a matrix in Jordan canonical form), and $ t $ is an endomorphism such that the matrix $ \| b _{ij} \| $ of $ t $ in the same basis has $ b _{ij} = 0 $ for $ i \neq j $ and $ b _{ii} = a _{ii} $ for all $ i $, then

$$ g \ = \ t + ( g - t ) $$

is the Jordan decomposition of $ g $ with $ g _{s} = t $ and $ g _{n} = g -t $.

The Jordan decomposition exists and is unique for any endomorphism $ g $ of a vector space $ V $ over an algebraically closed field $ K $. Moreover, $ g _{s} = P (g) $ and $ g _{n} = Q (g) $ for some polynomials $ P $ and $ Q $ over $ K $ (depending on $ g $) with constant terms equal to zero. If $ W $ is a $ g $-invariant subspace of $ V $, then $ W $ is invariant under $ g _{s} $ and $ g _{n} $, and

$$ g \mid _{W} \ = \ \left . g _{s} \right | _{W} + \left . g _{n} \right | _{W} $$

is the Jordan decomposition of $ g \mid _{W} $ (here $ \mid _{W} $ means restriction to $ W $). If $ k $ is a subfield of $ K $ and $ g $ is rational over $ k $ (with respect to some $ k $-structure on $ V $), then $ g _{s} $ and $ g _{n} $ need not be rational over $ k $; one may only assert that $ g _{s} $ and $ g _{n} $ are rational over $ k ^ {p ^ {- \infty}} $, where $ p $ is the characteristic exponent of $ k $ (for $ p = 1 $, $ k ^ {p ^ {- \infty}} $ is $ k $, and for $ p > 1 $ it is the set of all elements of $ K $ that are purely inseparable over $ k $.

If $ g $ is an automorphism of $ V $, then $ g _{s} $ is also an automorphism of $ V $, and

$$ g = g _{s} g _{u} \ = \ g _{u} g _{s} , $$

where $ g _{u} = 1 _{V} + g _ s^{-1} g _{n} $ and $ 1 _{V} $ is the identity automorphism of $ V $. The automorphism $ g _{u} $ is unipotent, that is, all its eigen values are equal to one. Every representation of $ g $ as a product of commuting semi-simple and unipotent automorphisms coincides with the representation $ g = g _{s} g _{u} = g _{u} g _{s} $ already described. This representation is called the multiplicative Jordan decomposition of the automorphism $ g $, and $ g _{s} $ and $ g _{u} $ are called the semi-simple and unipotent components of $ g $. If $ g $ is rational over $ k $, then $ g _{s} $ and $ g _{u} $ are rational over $ k ^ {p ^ {- \infty}} $. If $ W $ is a $ g $-invariant subspace of $ V $, then $ W $ is invariant under $ g _{s} $ and $ g _{u} $, and

$$ g \mid _{W} \ = \ \left . g _{s} \right | _{W} \left . g _{u} \right | _{W} $$

is the multiplicative Jordan decomposition of $ g \mid _{W} $.

The concept of a Jordan decomposition can be generalized to locally finite endomorphisms of an infinite-dimensional vector space $ V $, that is, endomorphisms $ g $ such that $ V $ is generated by finite-dimensional $ g $-invariant subspaces. For such $ g $, there is one and only one decomposition of $ g $ as a sum $ g = g _{s} + g _{n} $ (and in the case of an automorphism, one and only one decomposition of $ g $ as a product $ g _{s} g _{u} $) of commuting locally finite semi-simple and nilpotent endomorphisms (semi-simple and unipotent automorphisms, respectively), that is, endomorphisms (automorphisms) such that every finite-dimensional $ g $-invariant subspace $ W $ of $ V $ is invariant under $ g _{s} $ and $ g _{n} $ ($ g _{s} $ and $ g _{u} $, respectively) and $ g | _{W} = g _{s} \mid _{W} + g _{n} | _{W} $ ($ g \mid _{W} = g _{s} | _{W} g _{u} | _{W} $, respectively) is the Jordan decomposition of $ g \mid _{W} $.

This extension of the concept of a Jordan decomposition allows one to introduce the concept of a Jordan decomposition in algebraic groups and algebras. Let $ G $ be an affine algebraic group over $ K $ (cf. Affine group), let $ {\mathcal G} $ be its Lie algebra, let $ \rho $ be the representation of $ G $ in the group of automorphisms of the algebra $ K [ G ] $ of regular functions on $ G $ defined by right translations, and let $ d \rho $ be its derivation. For arbitrary $ g $ in $ G $ and $ X $ in $ {\mathcal G} $, the endomorphisms $ \rho (g) $ and $ d \rho (X) $ of the vector space $ K [ G ] $ are locally finite, so that one can speak of their Jordan decompositions:

$$ \rho (g) \ = \ \rho (g) _{s} \rho (g) _{u} $$

and

$$ d \rho (X) \ = \ d \rho (X) _{s} + d \rho (X) _{n} . $$

One of the important results in the theory of algebraic groups is that the Jordan decomposition just indicated is realized by the use of elements of $ G $ and $ {\mathcal G} $, respectively. More exactly, there exist unique elements $ g _{s} ,\ g _{u} \in G $ and $ X _{s} ,\ X _{n} \in {\mathcal G} $ such that

$$ \tag{1} g \ = \ g _{s} g _{u} \ = \ g _{u} g _{s} , $$

$$ \tag{2} X \ = \ X _{s} + X _{n} ,\ \ [ X _{s} ,\ X _{n} ] \ = \ 0 , $$

and

$$ \rho ( g _{s} ) \ = \ \rho (g) _{s} ,\ \ \rho ( g _{u} ) \ = \ \rho (g) _{u} , $$

$$ d \rho ( X _{s} ) \ = \ ( d \rho (X) ) _{s} ,\ \ d \rho ( X _{n} ) \ = \ ( d \rho (X) ) _{n} . $$

The decomposition (1) is called the Jordan decomposition in the algebraic group $ G $, and (2) the Jordan decomposition in the algebraic Lie algebra $ {\mathcal G} $. If $ G $ is defined over a subfield $ k $ of $ K $ and the element $ g \in G $ ($ X \in {\mathcal G} $, respectively) is rational over $ k $, then $ g _{s} $ and $ g _{u} $ ($ X _{s} $ and $ X _{n} $, respectively) are rational over $ k ^ {p ^ {- \infty}} $. Moreover, if $ G $ is realized as a closed subgroup of the general linear group $ \mathop{\rm GL}\nolimits (V) $ of automorphisms of some finite-dimensional vector space $ V $ (and thus $ {\mathcal G} $ is realized as a subalgebra of the Lie algebra of $ \mathop{\rm GL}\nolimits (V) $), then the Jordan decomposition (1) of $ g \in G $ coincides with the multiplicative decomposition introduced above for $ g $, while the decomposition (2) for $ X \in {\mathcal G} $ coincides with the additive Jordan decomposition for $ X $ (considered as endomorphisms of $ V $). If $ \phi : \ G _{1} \rightarrow G _{2} $ is a rational homomorphism of affine algebraic groups and $ d \phi : \ {\mathcal G} _{1} \rightarrow {\mathcal G} _{2} $ is the corresponding homomorphism of their Lie algebras, then

$$ \phi ( g _{s} ) \ = \ \phi (g) _{s} ,\ \ \phi ( g _{u} ) \ = \ \phi (g) _{u} , $$

$$ d \phi ( X _{s} ) \ = \ ( d \phi (X) ) _{s} ,\ \ d \phi ( X _{n} ) \ = \ ( d \phi (X) ) _{n} $$

for arbitrary $ g \in G _{1} $, $ X \in {\mathcal G} _{1} $.

The concept of a Jordan decomposition in algebraic groups and algebraic Lie algebras allows one to introduce the definitions of a semi-simple and a unipotent (nilpotent, respectively) element in an arbitrary affine algebraic group (algebraic Lie algebra, respectively). An element $ g \in G $ is said to be semi-simple if $ g = g _{s} $, and unipotent if $ g = g _{u} $; an element $ X \in {\mathcal G} $ is said to be semi-simple if $ X = X _{s} $ and nilpotent if $ X = X _{n} $. If $ G $ is defined over $ k $, then

$$ G _{u} \ = \ \{ {g \in G} : {g = g _ u} \} $$

is a $ k $-closed subset of $ G $, and

$$ {\mathcal G} _{n} \ = \ \{ {X \in {\mathcal G}} : {X = X _ n} \} $$

is a $ k $-closed subset of $ {\mathcal G} $. In general,

$$ G _{s} \ = \ \{ {g \in G} : {g = g _ s} \} $$

is not a closed set, but if $ G $ is commutative, then $ G _{s} $ and $ G _{u} $ are closed subgroups and $ G = G _{s} \times G _{u} $. The sets $ G _{s} $ and $ G _{u} $ in an arbitrary affine algebraic group are invariant under inner automorphisms, and the study of decompositions of these sets into classes of conjugate elements is a subject of special investigations [3].

References

[1] A. Borel, "Linear algebraic groups" , Benjamin (1969) MR0251042 Zbl 0206.49801 Zbl 0186.33201
[2] E.R. Kolchin, "Algebraic matrix groups and the Picard–Vessiot theory of homogeneous linear ordinary differential equations" Ann. of Math. , 49 (1948) pp. 1–42
[3] A. Borel (ed.) R. Carter (ed.) C.W. Curtis (ed.) N. Iwahori (ed.) T.A. Springer (ed.) R. Steinberg (ed.) , Seminar on algebraic groups and related finite groups , Lect. notes in math. , 131 , Springer (1970) Zbl 0192.36201

V.L. Popov

Comments

References

[a1] R. Steinberg, "Conjugacy classes in algebraic groups" , Lect. notes in math. , 366 , Springer (1974) MR0352279 Zbl 0281.20037
How to Cite This Entry:
Jordan decomposition (of an endomorphism). Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Jordan_decomposition_(of_an_endomorphism)&oldid=21983
This article was adapted from an original article by M.I. Voitsekhovskii, V.L. Popov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article