Namespaces
Variants
Actions

Difference between revisions of "Interior mapping"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051840/i0518401.png" /> from a topological space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051840/i0518402.png" /> into a topological space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051840/i0518403.png" /> such that the image of any set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051840/i0518404.png" /> open in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051840/i0518405.png" /> is also open in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051840/i0518406.png" />, while the inverse image <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051840/i0518407.png" /> of any point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051840/i0518408.png" /> is totally disconnected (i.e. does not contain connected components other than points).
+
<!--
 +
i0518401.png
 +
$#A+1 = 28 n = 0
 +
$#C+1 = 28 : ~/encyclopedia/old_files/data/I051/I.0501840 Interior mapping
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051840/i0518409.png" /> map some [[Riemann surface|Riemann surface]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051840/i05184010.png" /> into the sphere <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051840/i05184011.png" />; a homeomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051840/i05184012.png" /> from an oriented surface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051840/i05184013.png" /> will then induce a mapping
+
{{TEX|auto}}
 +
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051840/i05184014.png" /></td> </tr></table>
+
A mapping  $  f: X \rightarrow Y $
 +
from a topological space  $  X $
 +
into a topological space  $  Y $
 +
such that the image of any set  $  U $
 +
open in  $  X $
 +
is also open in  $  Y $,
 +
while the inverse image  $  f ^ { - 1 } ( y) $
 +
of any point  $  y \in Y $
 +
is totally disconnected (i.e. does not contain connected components other than points).
  
which is topologically equivalent with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051840/i05184015.png" />. For an analytic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051840/i05184016.png" /> and some mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051840/i05184017.png" /> to be topologically equivalent it is necessary and sufficient for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051840/i05184018.png" /> to be an interior mapping (then there exists a homeomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051840/i05184019.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051840/i05184020.png" />) (Stoilow's theorem).
+
Let  $  F $
 +
map some [[Riemann surface|Riemann surface]]  $  R $
 +
into the sphere  $  S  ^ {2} $;
 +
a homeomorphism  $  T: M \rightarrow R $
 +
from an oriented surface  $  M $
 +
will then induce a mapping
  
The local structure of the interior mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051840/i05184021.png" /> may be described as follows. For any point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051840/i05184022.png" /> there exist a neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051840/i05184023.png" /> and homeomorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051840/i05184024.png" /> of the unit disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051840/i05184025.png" /> onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051840/i05184026.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051840/i05184027.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051840/i05184028.png" />.
+
$$
 +
\widetilde{F}  =  F \circ T:  M  \rightarrow  S  ^ {2} ,
 +
$$
 +
 
 +
which is topologically equivalent with  $  F $.
 +
For an analytic function  $  F $
 +
and some mapping  $  \widetilde{F}  $
 +
to be topologically equivalent it is necessary and sufficient for  $  \widetilde{F}  $
 +
to be an interior mapping (then there exists a homeomorphism  $  T $
 +
such that  $  \widetilde{F}  = F \circ T  $)
 +
(Stoilow's theorem).
 +
 
 +
The local structure of the interior mapping $  \widetilde{F}  : M \rightarrow \mathbf R  ^ {2} $
 +
may be described as follows. For any point $  a \in M $
 +
there exist a neighbourhood $  U( a) $
 +
and homeomorphisms $  T _ {1} : B \rightarrow U( a) $
 +
of the unit disc $  B = \{ {z \in \mathbf R  ^ {2} } : {| z | < 1 } \} $
 +
onto $  U( a) $
 +
and $  T _ {2} : \widetilde{F}  ( U( a)) \rightarrow B $
 +
such that $  T _ {2} \circ \widetilde{F}  \circ T _ {1} = z  ^ {n} $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  S. [S. Stoilov] Stoilow,  "Leçons sur les principes topologiques de la théorie des fonctions analytiques" , Gauthier-Villars  (1938)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  S. [S. Stoilov] Stoilow,  "Leçons sur les principes topologiques de la théorie des fonctions analytiques" , Gauthier-Villars  (1938)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  G. Springer,  "Introduction to Riemann surfaces" , Addison-Wesley  (1957)  pp. Chapt.10</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  G.T. Whyburn,  "Topological analysis" , Princeton Univ. Press  (1964)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  G. Springer,  "Introduction to Riemann surfaces" , Addison-Wesley  (1957)  pp. Chapt.10</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  G.T. Whyburn,  "Topological analysis" , Princeton Univ. Press  (1964)</TD></TR></table>

Latest revision as of 22:13, 5 June 2020


A mapping $ f: X \rightarrow Y $ from a topological space $ X $ into a topological space $ Y $ such that the image of any set $ U $ open in $ X $ is also open in $ Y $, while the inverse image $ f ^ { - 1 } ( y) $ of any point $ y \in Y $ is totally disconnected (i.e. does not contain connected components other than points).

Let $ F $ map some Riemann surface $ R $ into the sphere $ S ^ {2} $; a homeomorphism $ T: M \rightarrow R $ from an oriented surface $ M $ will then induce a mapping

$$ \widetilde{F} = F \circ T: M \rightarrow S ^ {2} , $$

which is topologically equivalent with $ F $. For an analytic function $ F $ and some mapping $ \widetilde{F} $ to be topologically equivalent it is necessary and sufficient for $ \widetilde{F} $ to be an interior mapping (then there exists a homeomorphism $ T $ such that $ \widetilde{F} = F \circ T $) (Stoilow's theorem).

The local structure of the interior mapping $ \widetilde{F} : M \rightarrow \mathbf R ^ {2} $ may be described as follows. For any point $ a \in M $ there exist a neighbourhood $ U( a) $ and homeomorphisms $ T _ {1} : B \rightarrow U( a) $ of the unit disc $ B = \{ {z \in \mathbf R ^ {2} } : {| z | < 1 } \} $ onto $ U( a) $ and $ T _ {2} : \widetilde{F} ( U( a)) \rightarrow B $ such that $ T _ {2} \circ \widetilde{F} \circ T _ {1} = z ^ {n} $.

References

[1] S. [S. Stoilov] Stoilow, "Leçons sur les principes topologiques de la théorie des fonctions analytiques" , Gauthier-Villars (1938)

Comments

References

[a1] G. Springer, "Introduction to Riemann surfaces" , Addison-Wesley (1957) pp. Chapt.10
[a2] G.T. Whyburn, "Topological analysis" , Princeton Univ. Press (1964)
How to Cite This Entry:
Interior mapping. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Interior_mapping&oldid=16109
This article was adapted from an original article by V.A. Zorich (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article