Namespaces
Variants
Actions

Graph colouring

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


An assignment of colours to the vertices and/or edges of a graph which displays certain properties. A regular vertex (edge) colouring is a colouring of the vertices (edges) of a graph in which any two adjacent vertices (edges) have different colours. A regular vertex colouring is often simply called a graph colouring. A graph is said to be $ k $- colourable if there exists a regular vertex colouring of the graph by $ k $ colours. The smallest number of colours which suffices for a regular vertex colouring of a graph $ G $ is called the chromatic number $ \chi ( G) $ of $ G $. If $ \chi ( G) = k $, $ G $ is said to be $ k $- chromatic. A graph is $ 2 $- chromatic if and only if it contains no simple cycles of odd length. If the maximum degree of the vertices of $ G $ is $ r $, $ G $ is always $ r $- colourable except in two cases: 1) $ r = 2 $ and $ G $ has a connected component which is a cycle of odd length; or 2) $ r > 2 $ and the complete graph with $ r + 1 $ vertices is a connected component of $ G $.

The following inequality is valid for the union of two graphs $ G _ {1} $ and $ G _ {2} $:

$$ \chi ( G _ {1} \cup G _ {2} ) \leq \ \chi ( G _ {1} ) \chi ( G _ {2} ), $$

equality being attainable. Moreover, if $ G $ is such that $ \chi ( G) = k = a b $, then there exist subgraphs $ G _ {1} $ and $ G _ {2} $ in $ G $ such that $ G = G _ {1} \cup G _ {2} $, $ \chi ( G _ {1} ) = a $, $ \chi ( G _ {2} ) = b $. If $ G $ is a graph with $ n $ vertices and $ \overline{G}\; $ is the complementary graph to $ G $, then

$$ 2 \sqrt {n } \leq \ \chi ( G) + \chi ( \overline{G}\; ) \leq n + 1, $$

$$ n \leq \chi ( G) \chi ( \overline{G}\; ) \leq \left ( \frac{n + 1 }{2} \right ) ^ {2} , $$

all the bounds being attainable. The chromatic number $ \chi ( S) $ of a two-dimensional surface $ S $ is the largest of the chromatic numbers of the graphs which can be regularly imbedded in $ S $( cf. Graph imbedding). The equality

$$ \chi ( S _ \gamma ) = \ \left [ \frac{7 + \sqrt {1 + 48 \gamma } }{2} \right ] $$

is valid for an orientable surface $ S _ \gamma $ of genus $ \gamma > 0 $. If $ \gamma = 0 $, this equation assumes the form $ \chi ( S _ {0} ) = 4 $, which is the statement of the four-colour problem. Let $ f ( G, t) $ be the number of different regular colourings of a graph $ G $ with numbered vertices with $ t $ or fewer colours; then, for any graph $ G $, the function $ f ( G, t) $ is a polynomial in the variable $ t $, called the chromatic polynomial of $ G $. Thus, the chromatic polynomial of any tree with $ n $ vertices has the form $ f ( G, t) = {t ( t - 1) } ^ {n - 1 } $. The edge chromatic number (chromatic class) $ \chi ^ \prime ( G) $ of $ G $ is the smallest number of colours sufficient for a regular colouring of the edges of $ G $. If the maximum degree of the vertices of $ G $ is $ k $( multiple edges are permitted), then

$$ k \leq \ \chi ^ \prime ( G) \leq \ \left [ { \frac{3}{2} } k \right ] . $$

If, in addition, the multiplicity of each edge is at most $ r $, then $ \chi ^ \prime ( G) \leq k + r $. In particular, for graphs without loops or multiple edges $ k \leq \chi ^ \prime ( G) \leq k + 1 $.

Problems involving graph colouring arise in design of communications, in radio-electronics, in planning of experiments, and in other fields.

References

[1] F. Harary, "Graph theory" , Addison-Wesley (1969) pp. Chapt. 9
[2] O. Ore, "Theory of graphs" , Amer. Math. Soc. (1962)
[3] C.E. Shannon, "A theorem on colouring the lines of a network" J. Math. Phys. , 28 (1949) pp. 148–151

Comments

Besides vertex colourings and edge colourings, the colourings of the domains (faces) of a planar map have also been studied. The four-colour problem mentioned in the article above (which is now the four-colour theorem) originally belonged to this category (see Graph, planar). Recent surveys on edge colourings are [a1] and [a2].

References

[a1] S. Fiorini, R.J. Wilson, "Edge-colourings of graphs" , Pitman (1977)
[a2] S. Fiorini, R.J. Wilson, "Edge-colourings of graphs" L.W. Beineke (ed.) R.J. Wilson (ed.) , Selected Topics in Graph Theory , Acad. Press (1978) pp. Chapt. 5
[a3] R.J. Wilson, "Introduction to graph theory" , Longman (1985)
[a4] R.C. Read, "An introduction to chromatic polynomials" J. Comb. Theory , 4 (1968) pp. 52–71
How to Cite This Entry:
Graph colouring. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Graph_colouring&oldid=52597
This article was adapted from an original article by V.B. Alekseev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article