Namespaces
Variants
Actions

Difference between revisions of "Gallagher ergodic theorem"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (→‎References: expand bibliodata)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g120/g120020/g1200201.png" /> be a non-negative function defined on the positive integers. Gallagher's ergodic theorem, or Gallagher's zero-one law states that the set of real numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g120/g120020/g1200202.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g120/g120020/g1200203.png" /> for which the Diophantine inequality (cf. also [[Diophantine equations|Diophantine equations]])
+
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g120/g120020/g1200204.png" /></td> </tr></table>
+
Let $f(q)$ be a non-negative function defined on the positive integers. Gallagher's ergodic theorem, or Gallagher's zero-one law states that the set of real numbers $x$ in $0\leq x\leq1$ for which the Diophantine inequality (cf. also [[Diophantine equations|Diophantine equations]])
  
has infinitely many integer solutions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g120/g120020/g1200205.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g120/g120020/g1200206.png" /> has [[Lebesgue measure|Lebesgue measure]] either <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g120/g120020/g1200207.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g120/g120020/g1200208.png" />.
+
$$\left|x-\frac pq\right|<f(q),\quad \gcd(p,q)=1,q>0,$$
  
The corresponding result, but without the condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g120/g120020/g1200209.png" />, was given by J.W.S. Cassels [[#References|[a1]]]. P. Gallagher [[#References|[a2]]] established his result for dimension one using the method of Cassels. The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g120/g120020/g12002010.png" />-dimensional generalization is due to V.T. Vil'chinskii [[#References|[a5]]]. A complex version is given in [[#References|[a3]]].
+
has infinitely many integer solutions $p$, $q$ has [[Lebesgue measure|Lebesgue measure]] either $0$ or $1$.
 +
 
 +
The corresponding result, but without the condition $\gcd(p,q)=1$, was given by J.W.S. Cassels [[#References|[a1]]]. P. Gallagher [[#References|[a2]]] established his result for dimension one using the method of Cassels. The $k$-dimensional generalization is due to V.T. Vil'chinskii [[#References|[a5]]]. A complex version is given in [[#References|[a3]]].
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J.W.S. Cassels,  "Some metrical theorems of Diophantine approximation I"  ''Proc. Cambridge Philos. Soc.'' , '''46'''  (1950)  pp. 209–218</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  P.X. Gallagher,  "Approximation by reduced fractions"  ''J. Math. Soc. Japan'' , '''13'''  (1961)  pp. 342–345</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  H. Nakada,  G. Wagner,  "Duffin–Schaeffer theorem of diophantine approximation for complex number"  ''Astérisque'' , '''198–200'''  (1991)  pp. 259–263</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  V.G. Sprindzuk,  "Metric theory of diophantine approximations" , Winston&amp;Wiley  (1979)  (In Russian)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  V.T. Vil'chinskii,  "On simultaneous approximations by irreducible fractions"  ''Vestsi Akad. Navuk BSSR Ser. Fiz.-Mat. Navuk''  (1981)  pp. 41–47  (In Russian)</TD></TR></table>
+
<table>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top">  J.W.S. Cassels,  "Some metrical theorems of Diophantine approximation I"  ''Proc. Cambridge Philos. Soc.'' , '''46'''  (1950)  pp. 209–218</TD></TR>
 +
<TR><TD valign="top">[a2]</TD> <TD valign="top">  P.X. Gallagher,  "Approximation by reduced fractions"  ''J. Math. Soc. Japan'' , '''13'''  (1961)  pp. 342–345 {{DOI|10.2969/jmsj/01340342}} {{MR|0133297}} {{ZBL|0106.04106}}</TD></TR>
 +
<TR><TD valign="top">[a3]</TD> <TD valign="top">  H. Nakada,  G. Wagner,  "Duffin–Schaeffer theorem of diophantine approximation for complex number"  ''Astérisque'' , '''198–200'''  (1991)  pp. 259–263</TD></TR>
 +
<TR><TD valign="top">[a4]</TD> <TD valign="top">  V.G. Sprindzuk,  "Metric theory of diophantine approximations" , Winston&amp;Wiley  (1979)  (In Russian)</TD></TR>
 +
<TR><TD valign="top">[a5]</TD> <TD valign="top">  V.T. Vil'chinskii,  "On simultaneous approximations by irreducible fractions"  ''Vestsi Akad. Navuk BSSR Ser. Fiz.-Mat. Navuk''  (1981)  pp. 41–47  (In Russian)</TD></TR>
 +
</table>

Latest revision as of 18:14, 11 April 2016


Let $f(q)$ be a non-negative function defined on the positive integers. Gallagher's ergodic theorem, or Gallagher's zero-one law states that the set of real numbers $x$ in $0\leq x\leq1$ for which the Diophantine inequality (cf. also Diophantine equations)

$$\left|x-\frac pq\right|<f(q),\quad \gcd(p,q)=1,q>0,$$

has infinitely many integer solutions $p$, $q$ has Lebesgue measure either $0$ or $1$.

The corresponding result, but without the condition $\gcd(p,q)=1$, was given by J.W.S. Cassels [a1]. P. Gallagher [a2] established his result for dimension one using the method of Cassels. The $k$-dimensional generalization is due to V.T. Vil'chinskii [a5]. A complex version is given in [a3].

References

[a1] J.W.S. Cassels, "Some metrical theorems of Diophantine approximation I" Proc. Cambridge Philos. Soc. , 46 (1950) pp. 209–218
[a2] P.X. Gallagher, "Approximation by reduced fractions" J. Math. Soc. Japan , 13 (1961) pp. 342–345 DOI 10.2969/jmsj/01340342 MR0133297 Zbl 0106.04106
[a3] H. Nakada, G. Wagner, "Duffin–Schaeffer theorem of diophantine approximation for complex number" Astérisque , 198–200 (1991) pp. 259–263
[a4] V.G. Sprindzuk, "Metric theory of diophantine approximations" , Winston&Wiley (1979) (In Russian)
[a5] V.T. Vil'chinskii, "On simultaneous approximations by irreducible fractions" Vestsi Akad. Navuk BSSR Ser. Fiz.-Mat. Navuk (1981) pp. 41–47 (In Russian)
How to Cite This Entry:
Gallagher ergodic theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Gallagher_ergodic_theorem&oldid=17316
This article was adapted from an original article by O. Strauch (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article