Namespaces
Variants
Actions

Fraction

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

2020 Mathematics Subject Classification: Primary: 97F40 [MSN][ZBL]


arithmetical

A fraction is a number consisting of one or more equal parts of a unit. It is denoted by the symbol $a/b$, where $a$ and $b\ne 0$ are integers (cf. Integer). The numerator $a$ of $a/b$ denotes the number of parts taken of the unit; this is divided by the number of parts equal to the number appearing as the denominator $b$. A fraction may also be considered as the ratio produced by dividing $a$ by $b$.

The fraction $a/b$ remains unchanged if both the numerator and the denominator are multiplied by the same non-zero integer. Owing to this fact, any two fractions $a/b$ and $c/d$ may be brought to a common denominator, i.e. $a/b$ and $c/d$ may be replaced by fractions equal to $a/b$ and $c/d$, respectively, both of which have the same denominator. Moreover, fractions may be reduced by dividing their numerator and denominator by the same number; accordingly, any fraction may be represented as an irreducible fraction, i.e. a fraction the numerator and denominator of which have no common factors.

The sum and the difference of two fractions $a/b$ and $c/b$ having a common denominator are given by

$$\frac{a}{b} \pm \frac{c}{b} = \frac{a\pm c}{b}$$ In order to add or to subtract fractions with different denominators they must first be reduced to fractions with a common denominator. As a rule, the least common multiple of the numbers $b$ and $d$ is taken as the common denominator. Multiplication and division of fractions is given by the following rules:

$$\frac{a}{b}\cdot\frac{c}{d} = \frac{a\cdot c}{b\cdot d},\quad \frac{a}{b} : \frac{c}{d} = \frac{a\cdot d}{b\cdot c},\quad (c\ne 0). $$ A fraction $a/b$ is said to be a proper fraction if its numerator is smaller than its denominator; otherwise it is an improper fraction. A fraction is said to be a decimal fraction if its denominator is a power of the number 10 (cf. Decimal fraction).

Formal definition of fractions.

Fractions may be represented as ordered pairs of integers $(a,b)$, $b\ne 0$, for which an equivalence relation has been specified (an equality relation of fractions), namely, it is considered that $(a,b) = (c,d)$ if $ad = bc$. The operations of addition, subtraction, multiplication, and division are defined in this set of fractions by the following rules:

$$(a,b)\pm (c,d) = (ad\pm bc,bd),$$

$$(a,b)\cdot (c,d) = (ac,bd),$$

$$(a,b): (c,d) = (ad,bc),$$ (thus, division is defined only if $c\ne 0$).

A similar definition of fractions is convenient in generalizations and is accepted in modern algebra (cf. Fractions, ring of).


Comments

The set of fractions (of the integers) is denoted by $\Q$. With the arithmetical operations and natural order defined in the main article above it is an ordered field. The absolute value gives a metric on $\Q$. Completion of $\Q$ in this metric (e.g. by using Cauchy sequences) leads to $\R$, the ordered field of real numbers (cf. Real number). In this connection, a fraction is also called a rational number, and a number from $\R$ that is not a fraction is called an irrational number, see, e.g., [HeSt].

For a construction of $\R$ from $\Q$ using Dedekind cuts (cf. also Dedekind cut) see, e.g., [Ru].

For aliquot fractions (i.e. numbers of the form $1/n$, $n$ a positive integer) see Aliquot ratio.

References

[HeSt] E. Hewitt, K.R. Stromberg, "Real and abstract analysis", Springer (1965) MR0188387 Zbl 0137.03202
[Ru] W. Rudin, "Principles of mathematical analysis", McGraw-Hill (1953) MR0055409 Zbl 0052.05301
How to Cite This Entry:
Fraction. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Fraction&oldid=30892
This article was adapted from an original article by S.A. Stepanov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article