Namespaces
Variants
Actions

Difference between revisions of "Comparison theorem"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
c0236401.png
 +
$#A+1 = 43 n = 0
 +
$#C+1 = 43 : ~/encyclopedia/old_files/data/C023/C.0203640 Comparison theorem
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''in the theory of differential equations''
 
''in the theory of differential equations''
  
Line 4: Line 16:
  
 
==Examples of comparison theorems.==
 
==Examples of comparison theorems.==
 
  
 
1) Sturm's theorem: Any non-trivial solution of the equation
 
1) Sturm's theorem: Any non-trivial solution of the equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023640/c0236401.png" /></td> </tr></table>
+
$$
 +
\dot{y} dot + p ( t) y  = 0,\ \
 +
p ( \cdot )  \in  C [ t _ {0} , t _ {1} ] ,
 +
$$
  
vanishes on the segment <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023640/c0236402.png" /> at most <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023640/c0236403.png" /> times <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023640/c0236404.png" /> if the equation
+
vanishes on the segment $  [ t _ {0} , t _ {1} ] $
 +
at most $  m $
 +
times $  ( m \geq  1) $
 +
if the equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023640/c0236405.png" /></td> </tr></table>
+
$$
 +
\dot{z} dot + q ( t) z  = 0,\ \
 +
q ( \cdot )  \in  C [ t _ {0} , t _ {1} ] ,
 +
$$
  
possesses this property and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023640/c0236406.png" /> when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023640/c0236407.png" /> (see [[#References|[1]]]).
+
possesses this property and $  q ( t) \geq  p ( t) $
 +
when $  t _ {0} \leq  t \leq  t _ {1} $(
 +
see [[#References|[1]]]).
  
 
2) A differential inequality: The solution of the problem
 
2) A differential inequality: The solution of the problem
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023640/c0236408.png" /></td> </tr></table>
+
$$
 +
\dot{x} _ {i}  = \
 +
f _ {i} ( t, x _ {1} \dots x _ {n} ),\ \
 +
x _ {i} ( t _ {0} )  = \
 +
x _ {i}  ^ {0} ,\ \
 +
i = 1 \dots n ,
 +
$$
  
is component-wise non-negative when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023640/c0236409.png" /> if the solution of the problem
+
is component-wise non-negative when $  t \geq  t _ {0} $
 +
if the solution of the problem
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023640/c02364010.png" /></td> </tr></table>
+
$$
 +
\dot{y} _ {i}  = \
 +
g _ {i} ( t, y _ {1} \dots y _ {n} ),\ \
 +
y _ {i} ( t _ {0} )  = y _ {i}  ^ {0} ,\ \
 +
i = 1 \dots n
 +
$$
  
 
possesses this property and if the inequalities
 
possesses this property and if the inequalities
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023640/c02364011.png" /></td> </tr></table>
+
$$
 +
f _ {i} ( t, x _ {1} \dots x _ {n} )  \geq  \
 +
g _ {i} ( t, x _ {1} \dots x _ {n} ),\ \
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023640/c02364012.png" /></td> </tr></table>
+
$$
 +
x _ {i}  ^ {0}  \geq  y _ {i}  ^ {0} ,\  i = 1 \dots n,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023640/c02364013.png" /></td> </tr></table>
+
$$
 +
 
 +
\frac{\partial  f _ {i} }{\partial  x _ {j} }
 +
 
 +
\geq  0,\ \
 +
i, j = 1 \dots n,\  i \neq j,
 +
$$
  
 
are fulfilled (see [[#References|[2]]]).
 
are fulfilled (see [[#References|[2]]]).
Line 38: Line 83:
 
One rich source for obtaining comparison theorems is the Lyapunov comparison principle with a vector function (see [[#References|[4]]]–[[#References|[7]]]). The idea of the comparison principle is as follows. Let a system of differential equations
 
One rich source for obtaining comparison theorems is the Lyapunov comparison principle with a vector function (see [[#References|[4]]]–[[#References|[7]]]). The idea of the comparison principle is as follows. Let a system of differential equations
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023640/c02364014.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
$$ \tag{1 }
 +
\dot{x}  = f ( t, x),\ \
 +
x = ( x _ {1} \dots x _ {n} )
 +
$$
  
 
and vector functions
 
and vector functions
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023640/c02364015.png" /></td> </tr></table>
+
$$
 +
V ( t, x)  = ( V _ {1} ( t, x) \dots V _ {m} ( t, x)),
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023640/c02364016.png" /></td> </tr></table>
+
$$
 +
W ( t, v)  = ( W _ {1} ( t, v) \dots W _ {m} ( t, v))
 +
$$
  
be given, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023640/c02364017.png" />. For any solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023640/c02364018.png" /> of the system (1), the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023640/c02364019.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023640/c02364020.png" />, satisfies the equation
+
be given, where $  v = ( v _ {1} \dots v _ {m} ) $.  
 +
For any solution $  x ( t) $
 +
of the system (1), the function $  v _ {j} ( t) = V _ {j} ( t, x ( t)) $,  
 +
$  j = 1 \dots m $,  
 +
satisfies the equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023640/c02364021.png" /></td> </tr></table>
+
$$
 +
\dot{v} _ {j} ( t)  = \
 +
 
 +
\frac{\partial  V _ {j} ( t, x ( t)) }{\partial  t }
 +
+
 +
\sum _ {k = 1 } ^ { n }
 +
 
 +
\frac{\partial  V _ {j} ( t, x ( t)) }{\partial  x _ {k} }
 +
 
 +
f _ {k} ( t, x ( t)).
 +
$$
  
 
Therefore, if the inequalities
 
Therefore, if the inequalities
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023640/c02364022.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$ \tag{2 }
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023640/c02364023.png" /></td> </tr></table>
+
\frac{\partial  V _ {j} ( t, x) }{\partial  t }
 +
+
 +
\sum _ {k = 1 } ^ { n }
 +
 
 +
\frac{\partial  V _ {j} ( t, x) }{\partial  x _ {k} }
 +
 
 +
f _ {k} ( t, x)  \leq  \
 +
W _ {j} ( t, V ( t, x)),
 +
$$
 +
 
 +
$$
 +
= 1 \dots m,
 +
$$
  
 
are fulfilled, then on the basis of the properties of the system of differential inequalities
 
are fulfilled, then on the basis of the properties of the system of differential inequalities
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023640/c02364024.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3)</td></tr></table>
+
$$ \tag{3 }
 +
\dot{v} _ {j}  \leq  \
 +
W _ {j} ( t, v _ {1} \dots v _ {m} ),\ \
 +
j = 1 \dots m,
 +
$$
 +
 
 +
something can be said about the behaviour of the functions  $  V _ {j} ( t, x ( t)) $
 +
that are solutions of the system (3). Knowing the behaviour of the functions  $  V _ {j} ( t, x) $
 +
on every solution  $  x ( t) $
 +
of the system (1), in turn, enables one to state assertions on the properties of the solutions of the system (1).
 +
 
 +
For example, let the vector functions  $  V ( t, x) $
 +
and  $  W ( t, v) $
 +
satisfy the inequalities (2) and for any  $  t _ {1} \geq  t _ {0} $,
 +
$  \gamma > 0 $,
 +
let a number  $  M > 0 $
 +
exist such that
 +
 
 +
$$
 +
\sum _ {j = 1 } ^ { m }
 +
| V _ {j} ( t, x) |
 +
\geq  M
 +
$$
  
something can be said about the behaviour of the functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023640/c02364025.png" /> that are solutions of the system (3). Knowing the behaviour of the functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023640/c02364026.png" /> on every solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023640/c02364027.png" /> of the system (1), in turn, enables one to state assertions on the properties of the solutions of the system (1).
+
for all  $  t \in [ t _ {0} , t _ {1} ] $,
 +
$  \| x \| \geq  \gamma $.  
 +
Furthermore, let every solution of the system of inequalities (3) be defined on  $  [ t, \infty ) $.  
 +
Every solution of the system (1) is then also defined on  $  [ t, \infty ) $.
  
For example, let the vector functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023640/c02364028.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023640/c02364029.png" /> satisfy the inequalities (2) and for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023640/c02364030.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023640/c02364031.png" />, let a number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023640/c02364032.png" /> exist such that
+
A large number of interesting statements have been obtained on the basis of the comparison principle in the theory of the stability of motion (see [[#References|[4]]]–[[#References|[6]]]). The Lyapunov comparison principle with a vector function is successfully used for abstract differential equations, differential equations with distributed argument and differential inclusions (cf. [[Differential equation, abstract|Differential equation, abstract]]; [[Differential equations, ordinary, with distributed arguments|Differential equations, ordinary, with distributed arguments]]; [[Differential inclusion|Differential inclusion]]). In particular, for a differential inclusion  $  \dot{x} \in F ( t, x) $,
 +
$  x \in \mathbf R  ^ {n} $,
 +
where  $  F ( t, x) $
 +
is a set in  $  \mathbf R  ^ {n} $
 +
dependent on  $  ( t, x) \in \mathbf R  ^ {1} \times \mathbf R  ^ {n} $,
 +
the role of the inequalities (2) is played by the inequalities
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023640/c02364033.png" /></td> </tr></table>
+
$$
  
for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023640/c02364034.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023640/c02364035.png" />. Furthermore, let every solution of the system of inequalities (3) be defined on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023640/c02364036.png" />. Every solution of the system (1) is then also defined on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023640/c02364037.png" />.
+
\frac{\partial  V _ {j} ( t, x) }{\partial  t }
 +
+
 +
\sup _ {y \in F ( t, x) } \
 +
\sum _ {k = 1 } ^ { n }
  
A large number of interesting statements have been obtained on the basis of the comparison principle in the theory of the stability of motion (see [[#References|[4]]]–[[#References|[6]]]). The Lyapunov comparison principle with a vector function is successfully used for abstract differential equations, differential equations with distributed argument and differential inclusions (cf. [[Differential equation, abstract|Differential equation, abstract]]; [[Differential equations, ordinary, with distributed arguments|Differential equations, ordinary, with distributed arguments]]; [[Differential inclusion|Differential inclusion]]). In particular, for a differential inclusion <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023640/c02364038.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023640/c02364039.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023640/c02364040.png" /> is a set in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023640/c02364041.png" /> dependent on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023640/c02364042.png" />, the role of the inequalities (2) is played by the inequalities
+
\frac{\partial  V _ {j} ( t, x) }{\partial  x _ {k} }
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c023/c023640/c02364043.png" /></td> </tr></table>
+
y _ {k}  \leq  \
 +
W _ {j} ( t, V ( t, x)).
 +
$$
  
 
A large number of comparison theorems are given in [[#References|[8]]].
 
A large number of comparison theorems are given in [[#References|[8]]].
Line 76: Line 189:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  C. Sturm,  ''J. Math. Pures Appl.'' , '''1'''  (1836)  pp. 106–186</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  T. Waźewski,  "Systèmes des équations et des inégalités différentielles ordinaires aux deuxième members monotones et leurs applications"  ''Ann. Soc. Polon. Math.'' , '''23'''  (1950)  pp. 112–166</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  A. Friedman,  "Partial differential equations of parabolic type" , Prentice-Hall  (1964)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  R.E. Bellman,  "Vector Lyapunov functions"  ''J. Soc. Industr. Appl. Math. Ser. A Control.'' , '''1''' :  1  (1962)  pp. 32–34</TD></TR><TR><TD valign="top">[5a]</TD> <TD valign="top">  V.M. Matrosov,  "The comparison principle with a Lyapunov vector-function I"  ''Differential Equations'' , '''4''' :  8  (1968)  pp. 710–717  ''Differentsial'nye Uravneniya'' , '''4''' :  8  (1968)  pp. 1374–1386</TD></TR><TR><TD valign="top">[5b]</TD> <TD valign="top">  V.M. Matrosov,  "Principle of comparison with the Lyapunov vector-functions II"  ''Differential Equations'' , '''4''' :  10  (1968)  pp. 893–900  ''Differentsial'nye Uravneniya'' , '''4''' :  10  (1968)  pp. 1739–1752</TD></TR><TR><TD valign="top">[5c]</TD> <TD valign="top">  V.M. Matrosov,  "Comparison principle with vector-valued Lyapunov functions III"  ''Differential Equations'' , '''5''' :  7  (1969)  pp. 853–864  ''Differentsial'nye Uravneniya'' , '''5''' :  7  (1969)  pp. 1171–1185</TD></TR><TR><TD valign="top">[5d]</TD> <TD valign="top">  V.M. Matrosov,  "The principle of comparison with a Lyapunov vector-function IV"  ''Differential Equations'' , '''5''' :  12  (1969)  pp. 1596–1607  ''Differentsial'nye Uravneniya'' , '''5''' :  12  (1969)  pp. 2129–2143</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  A.A. Martynyuk,  "Stability of motion of complex systems" , Kiev  (1975)  (In Russian)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  A.A. Martynyuk,  R. Gutovski,  "Integral inequalities and stability of motion" , Kiev  (1979)  (In Russian)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top">  E. Kamke,  "Differentialgleichungen: Lösungen und Lösungsmethoden" , '''1–2''' , Akad. Verlagsgesell.  (1943–1944)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  C. Sturm,  ''J. Math. Pures Appl.'' , '''1'''  (1836)  pp. 106–186</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  T. Waźewski,  "Systèmes des équations et des inégalités différentielles ordinaires aux deuxième members monotones et leurs applications"  ''Ann. Soc. Polon. Math.'' , '''23'''  (1950)  pp. 112–166</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  A. Friedman,  "Partial differential equations of parabolic type" , Prentice-Hall  (1964)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  R.E. Bellman,  "Vector Lyapunov functions"  ''J. Soc. Industr. Appl. Math. Ser. A Control.'' , '''1''' :  1  (1962)  pp. 32–34</TD></TR><TR><TD valign="top">[5a]</TD> <TD valign="top">  V.M. Matrosov,  "The comparison principle with a Lyapunov vector-function I"  ''Differential Equations'' , '''4''' :  8  (1968)  pp. 710–717  ''Differentsial'nye Uravneniya'' , '''4''' :  8  (1968)  pp. 1374–1386</TD></TR><TR><TD valign="top">[5b]</TD> <TD valign="top">  V.M. Matrosov,  "Principle of comparison with the Lyapunov vector-functions II"  ''Differential Equations'' , '''4''' :  10  (1968)  pp. 893–900  ''Differentsial'nye Uravneniya'' , '''4''' :  10  (1968)  pp. 1739–1752</TD></TR><TR><TD valign="top">[5c]</TD> <TD valign="top">  V.M. Matrosov,  "Comparison principle with vector-valued Lyapunov functions III"  ''Differential Equations'' , '''5''' :  7  (1969)  pp. 853–864  ''Differentsial'nye Uravneniya'' , '''5''' :  7  (1969)  pp. 1171–1185</TD></TR><TR><TD valign="top">[5d]</TD> <TD valign="top">  V.M. Matrosov,  "The principle of comparison with a Lyapunov vector-function IV"  ''Differential Equations'' , '''5''' :  12  (1969)  pp. 1596–1607  ''Differentsial'nye Uravneniya'' , '''5''' :  12  (1969)  pp. 2129–2143</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  A.A. Martynyuk,  "Stability of motion of complex systems" , Kiev  (1975)  (In Russian)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  A.A. Martynyuk,  R. Gutovski,  "Integral inequalities and stability of motion" , Kiev  (1979)  (In Russian)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top">  E. Kamke,  "Differentialgleichungen: Lösungen und Lösungsmethoden" , '''1–2''' , Akad. Verlagsgesell.  (1943–1944)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  C.A. Swanson,  "Comparison and oscillation theory of linear differential equations" , Acad. Press  (1968)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  G.S. Ladde,  V. Lakshmikantham,  "Random differential inequalities" , Acad. Press  (1980)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  C.A. Swanson,  "Comparison and oscillation theory of linear differential equations" , Acad. Press  (1968)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  G.S. Ladde,  V. Lakshmikantham,  "Random differential inequalities" , Acad. Press  (1980)</TD></TR></table>

Latest revision as of 17:45, 4 June 2020


in the theory of differential equations

A theorem that asserts the presence of a specific property of solutions of a differential equation (or system of differential equations) under the assumption that an auxiliary equation or inequality (system of differential equations or inequalities) possesses a certain property.

Examples of comparison theorems.

1) Sturm's theorem: Any non-trivial solution of the equation

$$ \dot{y} dot + p ( t) y = 0,\ \ p ( \cdot ) \in C [ t _ {0} , t _ {1} ] , $$

vanishes on the segment $ [ t _ {0} , t _ {1} ] $ at most $ m $ times $ ( m \geq 1) $ if the equation

$$ \dot{z} dot + q ( t) z = 0,\ \ q ( \cdot ) \in C [ t _ {0} , t _ {1} ] , $$

possesses this property and $ q ( t) \geq p ( t) $ when $ t _ {0} \leq t \leq t _ {1} $( see [1]).

2) A differential inequality: The solution of the problem

$$ \dot{x} _ {i} = \ f _ {i} ( t, x _ {1} \dots x _ {n} ),\ \ x _ {i} ( t _ {0} ) = \ x _ {i} ^ {0} ,\ \ i = 1 \dots n , $$

is component-wise non-negative when $ t \geq t _ {0} $ if the solution of the problem

$$ \dot{y} _ {i} = \ g _ {i} ( t, y _ {1} \dots y _ {n} ),\ \ y _ {i} ( t _ {0} ) = y _ {i} ^ {0} ,\ \ i = 1 \dots n $$

possesses this property and if the inequalities

$$ f _ {i} ( t, x _ {1} \dots x _ {n} ) \geq \ g _ {i} ( t, x _ {1} \dots x _ {n} ),\ \ $$

$$ x _ {i} ^ {0} \geq y _ {i} ^ {0} ,\ i = 1 \dots n, $$

$$ \frac{\partial f _ {i} }{\partial x _ {j} } \geq 0,\ \ i, j = 1 \dots n,\ i \neq j, $$

are fulfilled (see [2]).

For other examples of comparison theorems, including the Chaplygin theorem, see Differential inequality. For comparison theorems for partial differential equations see, for example, [3].

One rich source for obtaining comparison theorems is the Lyapunov comparison principle with a vector function (see [4][7]). The idea of the comparison principle is as follows. Let a system of differential equations

$$ \tag{1 } \dot{x} = f ( t, x),\ \ x = ( x _ {1} \dots x _ {n} ) $$

and vector functions

$$ V ( t, x) = ( V _ {1} ( t, x) \dots V _ {m} ( t, x)), $$

$$ W ( t, v) = ( W _ {1} ( t, v) \dots W _ {m} ( t, v)) $$

be given, where $ v = ( v _ {1} \dots v _ {m} ) $. For any solution $ x ( t) $ of the system (1), the function $ v _ {j} ( t) = V _ {j} ( t, x ( t)) $, $ j = 1 \dots m $, satisfies the equation

$$ \dot{v} _ {j} ( t) = \ \frac{\partial V _ {j} ( t, x ( t)) }{\partial t } + \sum _ {k = 1 } ^ { n } \frac{\partial V _ {j} ( t, x ( t)) }{\partial x _ {k} } f _ {k} ( t, x ( t)). $$

Therefore, if the inequalities

$$ \tag{2 } \frac{\partial V _ {j} ( t, x) }{\partial t } + \sum _ {k = 1 } ^ { n } \frac{\partial V _ {j} ( t, x) }{\partial x _ {k} } f _ {k} ( t, x) \leq \ W _ {j} ( t, V ( t, x)), $$

$$ j = 1 \dots m, $$

are fulfilled, then on the basis of the properties of the system of differential inequalities

$$ \tag{3 } \dot{v} _ {j} \leq \ W _ {j} ( t, v _ {1} \dots v _ {m} ),\ \ j = 1 \dots m, $$

something can be said about the behaviour of the functions $ V _ {j} ( t, x ( t)) $ that are solutions of the system (3). Knowing the behaviour of the functions $ V _ {j} ( t, x) $ on every solution $ x ( t) $ of the system (1), in turn, enables one to state assertions on the properties of the solutions of the system (1).

For example, let the vector functions $ V ( t, x) $ and $ W ( t, v) $ satisfy the inequalities (2) and for any $ t _ {1} \geq t _ {0} $, $ \gamma > 0 $, let a number $ M > 0 $ exist such that

$$ \sum _ {j = 1 } ^ { m } | V _ {j} ( t, x) | \geq M $$

for all $ t \in [ t _ {0} , t _ {1} ] $, $ \| x \| \geq \gamma $. Furthermore, let every solution of the system of inequalities (3) be defined on $ [ t, \infty ) $. Every solution of the system (1) is then also defined on $ [ t, \infty ) $.

A large number of interesting statements have been obtained on the basis of the comparison principle in the theory of the stability of motion (see [4][6]). The Lyapunov comparison principle with a vector function is successfully used for abstract differential equations, differential equations with distributed argument and differential inclusions (cf. Differential equation, abstract; Differential equations, ordinary, with distributed arguments; Differential inclusion). In particular, for a differential inclusion $ \dot{x} \in F ( t, x) $, $ x \in \mathbf R ^ {n} $, where $ F ( t, x) $ is a set in $ \mathbf R ^ {n} $ dependent on $ ( t, x) \in \mathbf R ^ {1} \times \mathbf R ^ {n} $, the role of the inequalities (2) is played by the inequalities

$$ \frac{\partial V _ {j} ( t, x) }{\partial t } + \sup _ {y \in F ( t, x) } \ \sum _ {k = 1 } ^ { n } \frac{\partial V _ {j} ( t, x) }{\partial x _ {k} } y _ {k} \leq \ W _ {j} ( t, V ( t, x)). $$

A large number of comparison theorems are given in [8].

References

[1] C. Sturm, J. Math. Pures Appl. , 1 (1836) pp. 106–186
[2] T. Waźewski, "Systèmes des équations et des inégalités différentielles ordinaires aux deuxième members monotones et leurs applications" Ann. Soc. Polon. Math. , 23 (1950) pp. 112–166
[3] A. Friedman, "Partial differential equations of parabolic type" , Prentice-Hall (1964)
[4] R.E. Bellman, "Vector Lyapunov functions" J. Soc. Industr. Appl. Math. Ser. A Control. , 1 : 1 (1962) pp. 32–34
[5a] V.M. Matrosov, "The comparison principle with a Lyapunov vector-function I" Differential Equations , 4 : 8 (1968) pp. 710–717 Differentsial'nye Uravneniya , 4 : 8 (1968) pp. 1374–1386
[5b] V.M. Matrosov, "Principle of comparison with the Lyapunov vector-functions II" Differential Equations , 4 : 10 (1968) pp. 893–900 Differentsial'nye Uravneniya , 4 : 10 (1968) pp. 1739–1752
[5c] V.M. Matrosov, "Comparison principle with vector-valued Lyapunov functions III" Differential Equations , 5 : 7 (1969) pp. 853–864 Differentsial'nye Uravneniya , 5 : 7 (1969) pp. 1171–1185
[5d] V.M. Matrosov, "The principle of comparison with a Lyapunov vector-function IV" Differential Equations , 5 : 12 (1969) pp. 1596–1607 Differentsial'nye Uravneniya , 5 : 12 (1969) pp. 2129–2143
[6] A.A. Martynyuk, "Stability of motion of complex systems" , Kiev (1975) (In Russian)
[7] A.A. Martynyuk, R. Gutovski, "Integral inequalities and stability of motion" , Kiev (1979) (In Russian)
[8] E. Kamke, "Differentialgleichungen: Lösungen und Lösungsmethoden" , 1–2 , Akad. Verlagsgesell. (1943–1944)

Comments

References

[a1] C.A. Swanson, "Comparison and oscillation theory of linear differential equations" , Acad. Press (1968)
[a2] G.S. Ladde, V. Lakshmikantham, "Random differential inequalities" , Acad. Press (1980)
How to Cite This Entry:
Comparison theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Comparison_theorem&oldid=46412
This article was adapted from an original article by E.L. Tonkov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article