Namespaces
Variants
Actions

Difference between revisions of "Character of a finite-dimensional representation of a semi-simple Lie algebra"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
The function that assigns to every weight of the representation the dimension of the corresponding weight subspace. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021550/c0215501.png" /> is a Cartan subalgebra of a semi-simple Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021550/c0215502.png" /> over an algebraically closed field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021550/c0215503.png" /> of characteristic <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021550/c0215504.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021550/c0215505.png" /> is a linear representation and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021550/c0215506.png" /> is the weight subspace corresponding to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021550/c0215507.png" />, then the character of the representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021550/c0215508.png" /> (or of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021550/c0215509.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021550/c02155010.png" />) can be written in the form
+
<!--
 +
c0215501.png
 +
$#A+1 = 26 n = 0
 +
$#C+1 = 26 : ~/encyclopedia/old_files/data/C021/C.0201550 Character of a finite\AAhdimensional representation of a semi\AAhsimple Lie algebra
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021550/c02155011.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
and can be regarded as an element of the group ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021550/c02155012.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021550/c02155013.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021550/c02155014.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021550/c02155015.png" /> is an analytic linear representation of a Lie group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021550/c02155016.png" /> with Lie algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021550/c02155017.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021550/c02155018.png" /> can be regarded as the function on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021550/c02155019.png" /> suggested by the notation and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021550/c02155020.png" /> coincides with the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021550/c02155021.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021550/c02155022.png" />), where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021550/c02155023.png" /> is the character of the representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021550/c02155024.png" />. Characters of a representation of a Lie algebra have the following properties:
+
The function that assigns to every weight of the representation the dimension of the corresponding weight subspace. If $  \mathfrak h $
 +
is a Cartan subalgebra of a semi-simple Lie algebra $  \mathfrak g $
 +
over an algebraically closed field  $  k $
 +
of characteristic  $  0 $,  
 +
$  \phi : \mathfrak g \rightarrow \mathfrak g \mathfrak l (V) $
 +
is a linear representation and $  V _  \lambda  $
 +
is the weight subspace corresponding to  $  \lambda \in \mathfrak h  ^ {*} $,  
 +
then the character of the representation $  \phi $(
 +
or of the $  \mathfrak g $-
 +
module  $  V $)
 +
can be written in the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021550/c02155025.png" /></td> </tr></table>
+
$$
 +
\mathop{\rm ch}  V  = \
 +
\sum _ {\lambda \in \mathfrak h  ^ {*} }
 +
(  \mathop{\rm dim}  V _  \lambda  ) e  ^  \lambda
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/c/c021/c021550/c02155026.png" /></td> </tr></table>
+
and can be regarded as an element of the group ring  $  \mathbf Z [ \mathfrak h  ^ {*} ] $.
 +
If  $  k = \mathbf C $
 +
and  $  \phi = d \Phi $,
 +
where  $  \Phi : G \rightarrow  \mathop{\rm GL} (V) $
 +
is an analytic linear representation of a Lie group  $  G $
 +
with Lie algebra  $  \mathfrak g $,
 +
then  $  e  ^  \lambda  $
 +
can be regarded as the function on  $  \mathfrak h $
 +
suggested by the notation and  $  \mathop{\rm ch}  \phi $
 +
coincides with the function  $  x \mapsto \chi _  \Phi  ( e  ^ {x} ) $(
 +
$  x \in \mathfrak h $),
 +
where  $  \chi _  \Phi  $
 +
is the character of the representation  $  \Phi $.
 +
Characters of a representation of a Lie algebra have the following properties:
 +
 
 +
$$
 +
\mathop{\rm ch} (V _ {1} \oplus V _ {2} )  = \
 +
\mathop{\rm ch}  V _ {1} +  \mathop{\rm ch}  V _ {2} ,
 +
$$
 +
 
 +
$$
 +
\mathop{\rm ch} (V _ {1} \otimes V _ {2} )  =   \mathop{\rm ch}  V _ {1}  \cdot  \mathop{\rm ch}  V _ {2} .
 +
$$
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  J.-P. Serre,  "Lie algebras and Lie groups" , Benjamin  (1965)  (Translated from French)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  J. Dixmier,  "Algèbres enveloppantes" , Gauthier-Villars  (1974)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  J.-P. Serre,  "Lie algebras and Lie groups" , Benjamin  (1965)  (Translated from French)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  J. Dixmier,  "Algèbres enveloppantes" , Gauthier-Villars  (1974)</TD></TR></table>

Revision as of 16:25, 31 March 2020


The function that assigns to every weight of the representation the dimension of the corresponding weight subspace. If $ \mathfrak h $ is a Cartan subalgebra of a semi-simple Lie algebra $ \mathfrak g $ over an algebraically closed field $ k $ of characteristic $ 0 $, $ \phi : \mathfrak g \rightarrow \mathfrak g \mathfrak l (V) $ is a linear representation and $ V _ \lambda $ is the weight subspace corresponding to $ \lambda \in \mathfrak h ^ {*} $, then the character of the representation $ \phi $( or of the $ \mathfrak g $- module $ V $) can be written in the form

$$ \mathop{\rm ch} V = \ \sum _ {\lambda \in \mathfrak h ^ {*} } ( \mathop{\rm dim} V _ \lambda ) e ^ \lambda $$

and can be regarded as an element of the group ring $ \mathbf Z [ \mathfrak h ^ {*} ] $. If $ k = \mathbf C $ and $ \phi = d \Phi $, where $ \Phi : G \rightarrow \mathop{\rm GL} (V) $ is an analytic linear representation of a Lie group $ G $ with Lie algebra $ \mathfrak g $, then $ e ^ \lambda $ can be regarded as the function on $ \mathfrak h $ suggested by the notation and $ \mathop{\rm ch} \phi $ coincides with the function $ x \mapsto \chi _ \Phi ( e ^ {x} ) $( $ x \in \mathfrak h $), where $ \chi _ \Phi $ is the character of the representation $ \Phi $. Characters of a representation of a Lie algebra have the following properties:

$$ \mathop{\rm ch} (V _ {1} \oplus V _ {2} ) = \ \mathop{\rm ch} V _ {1} + \mathop{\rm ch} V _ {2} , $$

$$ \mathop{\rm ch} (V _ {1} \otimes V _ {2} ) = \mathop{\rm ch} V _ {1} \cdot \mathop{\rm ch} V _ {2} . $$

References

[1] J.-P. Serre, "Lie algebras and Lie groups" , Benjamin (1965) (Translated from French)
[2] J. Dixmier, "Algèbres enveloppantes" , Gauthier-Villars (1974)
How to Cite This Entry:
Character of a finite-dimensional representation of a semi-simple Lie algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Character_of_a_finite-dimensional_representation_of_a_semi-simple_Lie_algebra&oldid=17019
This article was adapted from an original article by A.L. Onishchik (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article