Namespaces
Variants
Actions

Difference between revisions of "Nucleus"

From Encyclopedia of Mathematics
Jump to: navigation, search
(→‎References: Johnstone (2002))
m (→‎References: isbn link)
 
Line 18: Line 18:
 
====References====
 
====References====
 
<table>
 
<table>
<TR><TD valign="top">[a1]</TD> <TD valign="top"> Peter T. Johnstone ''Sketches of an elephant'' Oxford University Press (2002) ISBN 0198534256 {{ZBL|1071.18001}}</TD></TR>
+
<TR><TD valign="top">[a1]</TD> <TD valign="top"> Peter T. Johnstone ''Sketches of an elephant'' Oxford University Press (2002) {{ISBN|0198534256}} {{ZBL|1071.18001}}</TD></TR>
 
</table>
 
</table>

Latest revision as of 16:48, 23 November 2023

on a partially ordered set

A function $F$ on a meet-semi-lattice $\mathfrak{A}$ such that (for every $p \in \mathfrak{A}$): $$ p \le F(p)\ ; $$ $$ F(F(p)) = F(p)\ ; $$ $$ F(p \wedge q) = F(p) \wedge F(q) \ . $$

Every nucleus is evidently a monotone function. A nucleus is determined by its poset $\operatorname{Fix}(F)$ of fixed points, since $F$ is left adjoint to the embedding $\operatorname{Fix}(F) \hookrightarrow \mathfrak{A}$.

Usually, the term nucleus is used in frames and locales theory (when the semilattice $\mathfrak{A}$ is a frame). If $F$ is a nucleus on a frame $\mathfrak{A}$, then $\operatorname{Fix}(F)$ with order inherited from $\mathfrak{A}$ is also a frame.

References

[a1] Peter T. Johnstone Sketches of an elephant Oxford University Press (2002) ISBN 0198534256 Zbl 1071.18001
How to Cite This Entry:
Nucleus. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Nucleus&oldid=54612