Difference between revisions of "Nucleus"
From Encyclopedia of Mathematics
(→References: Johnstone (2002)) |
m (→References: isbn link) |
||
Line 18: | Line 18: | ||
====References==== | ====References==== | ||
<table> | <table> | ||
− | <TR><TD valign="top">[a1]</TD> <TD valign="top"> | + | <TR><TD valign="top">[a1]</TD> <TD valign="top"> Peter T. Johnstone ''Sketches of an elephant'' Oxford University Press (2002) {{ISBN|0198534256}} {{ZBL|1071.18001}}</TD></TR> |
</table> | </table> |
Latest revision as of 16:48, 23 November 2023
A function $F$ on a meet-semi-lattice $\mathfrak{A}$ such that (for every $p \in \mathfrak{A}$): $$ p \le F(p)\ ; $$ $$ F(F(p)) = F(p)\ ; $$ $$ F(p \wedge q) = F(p) \wedge F(q) \ . $$
Every nucleus is evidently a monotone function. A nucleus is determined by its poset $\operatorname{Fix}(F)$ of fixed points, since $F$ is left adjoint to the embedding $\operatorname{Fix}(F) \hookrightarrow \mathfrak{A}$.
Usually, the term nucleus is used in frames and locales theory (when the semilattice $\mathfrak{A}$ is a frame). If $F$ is a nucleus on a frame $\mathfrak{A}$, then $\operatorname{Fix}(F)$ with order inherited from $\mathfrak{A}$ is also a frame.
References
[a1] | Peter T. Johnstone Sketches of an elephant Oxford University Press (2002) ISBN 0198534256 Zbl 1071.18001 |
How to Cite This Entry:
Nucleus. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Nucleus&oldid=54612
Nucleus. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Nucleus&oldid=54612