|
|
Line 1: |
Line 1: |
− | The distribution of the fractional parts <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033500/d0335001.png" /> of a sequence of real numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033500/d0335002.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033500/d0335003.png" /> in the unit interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033500/d0335004.png" />. The sequence of fractional parts <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033500/d0335005.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033500/d0335006.png" /> is called uniformly distributed in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033500/d0335007.png" /> if the equality | + | {{TEX|done}} |
| + | The distribution of the fractional parts $\{\alpha_j\}$ of a sequence of real numbers $\alpha_j$, $j=1,2,\dots,$ in the unit interval $[0,1)$. The sequence of fractional parts $\{\alpha_j\}$, $j=1,2,\dots,$ is called uniformly distributed in $[0,1)$ if the equality |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033500/d0335008.png" /></td> </tr></table>
| + | $$\lim_{n\to\infty}\frac{\phi_n(a,b)}{n}=b-a$$ |
| | | |
− | holds for any interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033500/d0335009.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033500/d03350010.png" /> is the number of terms among the first <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033500/d03350011.png" /> members of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033500/d03350012.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033500/d03350013.png" /> which belong to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033500/d03350014.png" />. In this case the sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033500/d03350015.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033500/d03350016.png" /> is said to be uniformly distributed modulo one. | + | holds for any interval $[a,b)\subset[0,1)$, where $\phi_n(a,b)$ is the number of terms among the first $n$ members of $\{\alpha_j\}$, $j=1,2,\dots,$ which belong to $[a,b)$. In this case the sequence $\alpha_j$, $j=1,2,\dots,$ is said to be uniformly distributed modulo one. |
| | | |
− | Weyl's criterion (see [[#References|[1]]]) for a distribution modulo one to be uniform: An infinite sequence of fractional parts <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033500/d03350017.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033500/d03350018.png" /> is uniformly distributed in the unit interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033500/d03350019.png" /> if and only if | + | Weyl's criterion (see [[#References|[1]]]) for a distribution modulo one to be uniform: An infinite sequence of fractional parts $\{\alpha_j\}$, $j=1,2,\dots,$ is uniformly distributed in the unit interval $[0,1)$ if and only if |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033500/d03350020.png" /></td> </tr></table>
| + | $$\lim_{n\to\infty}\frac1n\sum_{j=1}^nf(\{\alpha_j\})=\int\limits_0^1f(x)dx$$ |
| | | |
− | for any function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033500/d03350021.png" /> that is Riemann integrable on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033500/d03350022.png" />. This is equivalent to the following. In order that a sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033500/d03350023.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033500/d03350024.png" /> be uniformly distributed modulo one, it is necessary and sufficient that | + | for any function $f$ that is Riemann integrable on $[0,1]$. This is equivalent to the following. In order that a sequence $\alpha_j$, $j=1,2,\dots,$ be uniformly distributed modulo one, it is necessary and sufficient that |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033500/d03350025.png" /></td> </tr></table>
| + | $$\lim_{n\to\infty}\frac1n\sum_{j=1}^ne^{2\pi im\alpha_j}=0$$ |
| | | |
− | for any integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033500/d03350026.png" />. It follows from Weyl's criterion and his estimates for trigonometric sums involving a polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033500/d03350027.png" />, | + | for any integer $m\neq0$. It follows from Weyl's criterion and his estimates for trigonometric sums involving a polynomial $f$, |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033500/d03350028.png" /></td> </tr></table>
| + | $$\sum_{x=1}^pe^{2\pi if(x)},$$ |
| | | |
− | that the sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033500/d03350029.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033500/d03350030.png" /> of fractional parts is uniformly distributed in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033500/d03350031.png" /> provided that at least one coefficient <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033500/d03350032.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033500/d03350033.png" />, of the polynomial | + | that the sequence $\{f(n)\}$, $n=1,2,\dots,$ of fractional parts is uniformly distributed in $[0,1)$ provided that at least one coefficient $a_s$, $1\leq s\leq k$, of the polynomial |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033500/d03350034.png" /></td> </tr></table>
| + | $$f(x)=a_kx^k+\ldots+a_1x$$ |
| | | |
| is irrational. | | is irrational. |
Line 25: |
Line 26: |
| The concept of uniform distribution modulo one can be made quantitative by means of the quantity | | The concept of uniform distribution modulo one can be made quantitative by means of the quantity |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033500/d03350035.png" /></td> </tr></table>
| + | $$D_n=\sup_{0\leq a<b\leq1}\left|\frac{\phi_n(a,b)}{n}-(b-a)\right|,$$ |
| | | |
− | called the [[Discrepancy|discrepancy]] of the first <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033500/d03350036.png" /> members of the sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033500/d03350037.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d033/d033500/d03350038.png" /> (see [[#References|[2]]], [[#References|[3]]]). | + | called the [[Discrepancy|discrepancy]] of the first $n$ members of the sequence $\{\alpha_j\}$, $j=1,2,\dots$ (see [[#References|[2]]], [[#References|[3]]]). |
| | | |
| ====References==== | | ====References==== |
The distribution of the fractional parts $\{\alpha_j\}$ of a sequence of real numbers $\alpha_j$, $j=1,2,\dots,$ in the unit interval $[0,1)$. The sequence of fractional parts $\{\alpha_j\}$, $j=1,2,\dots,$ is called uniformly distributed in $[0,1)$ if the equality
$$\lim_{n\to\infty}\frac{\phi_n(a,b)}{n}=b-a$$
holds for any interval $[a,b)\subset[0,1)$, where $\phi_n(a,b)$ is the number of terms among the first $n$ members of $\{\alpha_j\}$, $j=1,2,\dots,$ which belong to $[a,b)$. In this case the sequence $\alpha_j$, $j=1,2,\dots,$ is said to be uniformly distributed modulo one.
Weyl's criterion (see [1]) for a distribution modulo one to be uniform: An infinite sequence of fractional parts $\{\alpha_j\}$, $j=1,2,\dots,$ is uniformly distributed in the unit interval $[0,1)$ if and only if
$$\lim_{n\to\infty}\frac1n\sum_{j=1}^nf(\{\alpha_j\})=\int\limits_0^1f(x)dx$$
for any function $f$ that is Riemann integrable on $[0,1]$. This is equivalent to the following. In order that a sequence $\alpha_j$, $j=1,2,\dots,$ be uniformly distributed modulo one, it is necessary and sufficient that
$$\lim_{n\to\infty}\frac1n\sum_{j=1}^ne^{2\pi im\alpha_j}=0$$
for any integer $m\neq0$. It follows from Weyl's criterion and his estimates for trigonometric sums involving a polynomial $f$,
$$\sum_{x=1}^pe^{2\pi if(x)},$$
that the sequence $\{f(n)\}$, $n=1,2,\dots,$ of fractional parts is uniformly distributed in $[0,1)$ provided that at least one coefficient $a_s$, $1\leq s\leq k$, of the polynomial
$$f(x)=a_kx^k+\ldots+a_1x$$
is irrational.
The concept of uniform distribution modulo one can be made quantitative by means of the quantity
$$D_n=\sup_{0\leq a<b\leq1}\left|\frac{\phi_n(a,b)}{n}-(b-a)\right|,$$
called the discrepancy of the first $n$ members of the sequence $\{\alpha_j\}$, $j=1,2,\dots$ (see [2], [3]).
References
[1] | H. Weyl, "Ueber die Gleichverteilung von Zahlen mod Eins" Math. Ann. , 77 (1916) pp. 313–352 |
[2] | I.M. Vinogradov, "The method of trigonometric sums in the theory of numbers" , Interscience (1954) (Translated from Russian) |
[3] | L.-K. Hua, "Abschätzungen von Exponentialsummen und ihre Anwendung in der Zahlentheorie" , Enzyklopaedie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen , 1 : 2 (1959) (Heft 13, Teil 1) |
References
[a1] | E. Hlawka, "Theorie der Gleichverteilung" , B.I. Wissenschaftverlag Mannheim (1979) |
[a2] | L. Kuipers, H. Niederreiter, "Uniform distribution of sequences" , Wiley (1974) |