Difference between revisions of "Cauchy test"
m (Camillo.delellis moved page Cauchy criterion to Cauchy test: Most commonly Cauchy criterion refers to convergence of sequences) |
|||
Line 1: | Line 1: | ||
− | + | {{MSC|40A05}} | |
+ | {{TEX|done}} | ||
− | + | The term is used for several tests which can be used to determine whether a series of real numbers converges or diverges. These tests are sometimes called Cauchy criteria. However, the latter term is most commonly used for a characterization of convergent sequences in the Euclidean space (and in general in complete metric spaces, see [[Cauchy criteria]]). | |
− | |||
− | |||
− | |||
− | |||
− | |||
+ | ====Cauchy criterion==== | ||
+ | A series $\sum a_i$ of real numbers converges if and only if for every $\varepsilon$ there is an $N$ such that | ||
+ | \[ | ||
+ | \left|\sum_{i=m}^n a_i\right| < \varepsilon \qquad \forall m, n \geq N\, . | ||
+ | \] | ||
+ | ====Root test==== | ||
+ | Let $\sum a_i$ be a series. If | ||
+ | \[ | ||
+ | \limsup_{n\to\infty} \left|a_n\right|^{1/n} < 1 | ||
+ | \] | ||
+ | then the series converges absolutely. If | ||
+ | \[ | ||
+ | \limsup_{n\to \infty} \left|a_n\right|^{1/n} > 1 | ||
+ | \] | ||
+ | then the series diverges. | ||
− | + | When | |
− | + | \[ | |
+ | \limsup_{n\to \infty} |a_n|^{a/n} = 1 | ||
+ | \] | ||
+ | it is possible that the series diverges, converges (but not absolutely) and converges absolutely. In particular, consider the series | ||
+ | \begin{eqnarray} | ||
+ | &\sum_{n=1}^\infty \frac{1}{n}\label{e:harmonic}\\ | ||
+ | &\sum_{n=1}^\infty (-1)^n \frac{1}{n}\label{e:harmonic_-}\\ | ||
+ | &\sum_{n=1}^\infty \frac{1}{n^2}\, . | ||
+ | \end{eqnarray} | ||
+ | In all these cases | ||
+ | \[ | ||
+ | \lim_{n\to \infty} |a_n|^{1/n} =1\, . | ||
+ | \] | ||
+ | However the first series diverges, the second converges, but not absolutely, and the third converges absolutely. | ||
− | + | ====Cauchy-MacLaurin integral test==== | |
+ | Let $f: [0, \infty[\to \mathbb R$ be a nonincreasing nonnegative function. Then the series $\sum f(n)$ converges if and only if the integral | ||
+ | \[ | ||
+ | \int_0^\infty f(x)\, dx | ||
+ | \] | ||
+ | is finite. | ||
− | + | ====Cauchy condensation test==== | |
+ | Let $\{a_n\}$ be a monotone vanishing sequence of nonnegative real numbers. Then $\sum_n a_n$ converges if and only if the following series converges | ||
+ | \[ | ||
+ | \sum_{n=0}^\infty 2^n a_{2^n}\, . | ||
+ | \] | ||
====References==== | ====References==== | ||
− | + | {| | |
+ | |- | ||
+ | |valign="top"|{{Ref|Ca1}}|| A.L. Cauchy, "Analyse algébrique" , Gauthier-Villars (1821) (German translation: Springer, 1885) | ||
+ | |- | ||
+ | |valign="top"|{{Ref|Ca2}}|| A.L. Cauchy, "Sur la convergence des séries" , ''Oeuvres complètes Ser. 2'' , '''7''' , Gauthier-Villars (1889) pp. 267–279 | ||
+ | |- | ||
+ | |valign="top"|{{Ref|Ha}}|| G.H. Hardy, "A course of pure mathematics" , Cambridge Univ. Press (1975) | ||
+ | |- | ||
+ | |valign="top"|{{Ref|Kn}}|| K. Knopp, "Theorie und Anwendung der unendlichen Reihen" , Springer (1964) (English translation: Blackie, 1951 & Dover, reprint, 1990) | ||
+ | |- | ||
+ | |valign="top"|{{Ref|ML}}|| C. MacLaurin, "Treatise of fluxions" , '''1''' , Edinburgh (1742) pp. 289–290 | ||
+ | |- | ||
+ | |valign="top"|{{Ref|Ni}}|| S.M. Nikol'skii, "A course of mathematical analysis" , '''1–2''' , MIR (1977) (Translated from Russian) | ||
+ | |- | ||
+ | |} |
Latest revision as of 20:30, 8 December 2013
2020 Mathematics Subject Classification: Primary: 40A05 [MSN][ZBL]
The term is used for several tests which can be used to determine whether a series of real numbers converges or diverges. These tests are sometimes called Cauchy criteria. However, the latter term is most commonly used for a characterization of convergent sequences in the Euclidean space (and in general in complete metric spaces, see Cauchy criteria).
Cauchy criterion
A series $\sum a_i$ of real numbers converges if and only if for every $\varepsilon$ there is an $N$ such that \[ \left|\sum_{i=m}^n a_i\right| < \varepsilon \qquad \forall m, n \geq N\, . \]
Root test
Let $\sum a_i$ be a series. If \[ \limsup_{n\to\infty} \left|a_n\right|^{1/n} < 1 \] then the series converges absolutely. If \[ \limsup_{n\to \infty} \left|a_n\right|^{1/n} > 1 \] then the series diverges.
When \[ \limsup_{n\to \infty} |a_n|^{a/n} = 1 \] it is possible that the series diverges, converges (but not absolutely) and converges absolutely. In particular, consider the series \begin{eqnarray} &\sum_{n=1}^\infty \frac{1}{n}\label{e:harmonic}\\ &\sum_{n=1}^\infty (-1)^n \frac{1}{n}\label{e:harmonic_-}\\ &\sum_{n=1}^\infty \frac{1}{n^2}\, . \end{eqnarray} In all these cases \[ \lim_{n\to \infty} |a_n|^{1/n} =1\, . \] However the first series diverges, the second converges, but not absolutely, and the third converges absolutely.
Cauchy-MacLaurin integral test
Let $f: [0, \infty[\to \mathbb R$ be a nonincreasing nonnegative function. Then the series $\sum f(n)$ converges if and only if the integral \[ \int_0^\infty f(x)\, dx \] is finite.
Cauchy condensation test
Let $\{a_n\}$ be a monotone vanishing sequence of nonnegative real numbers. Then $\sum_n a_n$ converges if and only if the following series converges \[ \sum_{n=0}^\infty 2^n a_{2^n}\, . \]
References
[Ca1] | A.L. Cauchy, "Analyse algébrique" , Gauthier-Villars (1821) (German translation: Springer, 1885) |
[Ca2] | A.L. Cauchy, "Sur la convergence des séries" , Oeuvres complètes Ser. 2 , 7 , Gauthier-Villars (1889) pp. 267–279 |
[Ha] | G.H. Hardy, "A course of pure mathematics" , Cambridge Univ. Press (1975) |
[Kn] | K. Knopp, "Theorie und Anwendung der unendlichen Reihen" , Springer (1964) (English translation: Blackie, 1951 & Dover, reprint, 1990) |
[ML] | C. MacLaurin, "Treatise of fluxions" , 1 , Edinburgh (1742) pp. 289–290 |
[Ni] | S.M. Nikol'skii, "A course of mathematical analysis" , 1–2 , MIR (1977) (Translated from Russian) |
Cauchy test. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Cauchy_test&oldid=30863