Difference between revisions of "Completely-continuous operator"
Wf6humboldt (talk | contribs) |
m (tex encoding is done) |
||
Line 1: | Line 1: | ||
− | + | {{TEX|done}} | |
''Completely-Continuous Operator'' | ''Completely-Continuous Operator'' | ||
− | A bounded linear operator | + | A bounded linear operator $f$, acting from a [[Banach space|Banach space]] $X$ into another space $Y$, that transforms weakly-convergent sequences in $X$ to norm-convergent sequences in $Y$. Equivalently, an operator $f$ is completely-continuous if it maps every relatively weakly compact subset of $X$ into a relatively compact subset of $Y$. It is easy to see that every compact operator is completely continuous, however the converse is false. For example, recall that the Banach space $X=l_1$ has the Schur Property, that is weak sequential and norm sequential convergence coincide. It follows that the identity operator from $X$ to $X$ is completely-continuous, but it is not compact since $X$ is infinite-dimensional. If $X$ is reflexive, then every completely-continuous operator is compact, so the two classes of operators do coincide in that case. In the past, the term "completely-continuous operator" was often used to mean compact operator which has sometimes resulted in confusion. |
− | It can be assumed that the space | + | It can be assumed that the space $X$ is separable (for $Y$ this is not a necessary condition; however, the image of a completely-continuous operator is always separable). |
Revision as of 04:18, 1 April 2013
Completely-Continuous Operator
A bounded linear operator $f$, acting from a Banach space $X$ into another space $Y$, that transforms weakly-convergent sequences in $X$ to norm-convergent sequences in $Y$. Equivalently, an operator $f$ is completely-continuous if it maps every relatively weakly compact subset of $X$ into a relatively compact subset of $Y$. It is easy to see that every compact operator is completely continuous, however the converse is false. For example, recall that the Banach space $X=l_1$ has the Schur Property, that is weak sequential and norm sequential convergence coincide. It follows that the identity operator from $X$ to $X$ is completely-continuous, but it is not compact since $X$ is infinite-dimensional. If $X$ is reflexive, then every completely-continuous operator is compact, so the two classes of operators do coincide in that case. In the past, the term "completely-continuous operator" was often used to mean compact operator which has sometimes resulted in confusion.
It can be assumed that the space $X$ is separable (for $Y$ this is not a necessary condition; however, the image of a completely-continuous operator is always separable).
The class of compact operators is the most important class of the set of completely-continuous operators (cf. Compact operator).
References
[1] | D. Hilbert, "Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen" , Chelsea, reprint (1953) |
[2] | F. Riesz, "Sur les opérations fonctionelles linéaires" C.R. Acad. Sci. Paris Sér. I Math. , 149 (1909) pp. 974–977 |
[3] | S.S. Banach, "Théorie des opérations linéaires" , Hafner (1932) |
Comments
References
[a1] | N. Dunford, J.T. Schwartz, "Linear operators. General theory" , 1 , Interscience (1958) |
[a2] | A.E. Taylor, D.C. Lay, "Introduction to functional analysis" , Wiley (1980) |
Completely-continuous operator. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Completely-continuous_operator&oldid=29569