Difference between revisions of "Forking"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | f1101501.png | ||
+ | $#A+1 = 137 n = 0 | ||
+ | $#C+1 = 137 : ~/encyclopedia/old_files/data/F110/F.1100150 Forking | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''(in logic)'' | ''(in logic)'' | ||
A notion introduced by S. Shelah [[#References|[a8]]]. The general theory of forking is also known as [[Stability theory|stability theory]], but more commonly, non-forking (the negation of forking) is defined as a certain well-behaved relation between a type and its extension (cf. [[Types, theory of|Types, theory of]]). | A notion introduced by S. Shelah [[#References|[a8]]]. The general theory of forking is also known as [[Stability theory|stability theory]], but more commonly, non-forking (the negation of forking) is defined as a certain well-behaved relation between a type and its extension (cf. [[Types, theory of|Types, theory of]]). | ||
− | Let | + | Let $ M $ |
+ | be a sufficiently saturated model of a theory $ T $ | ||
+ | in a countable first-order language (cf. also [[Formal language|Formal language]]; [[Model (in logic)|Model (in logic)]]; [[Model theory|Model theory]]). Given an $ n $- | ||
+ | tuple of variables $ {\overline{x}\; } $ | ||
+ | and $ A \subset M $, | ||
+ | a collection of formulas $ \phi ( {\overline{x}\; } , {\overline{a}\; } ) $ | ||
+ | with parameters $ {\overline{a}\; } $ | ||
+ | in $ A $ | ||
+ | is called an $ n $- | ||
+ | type over $ A $. | ||
+ | For simplicity, only $ 1 $- | ||
+ | types will be considered; these are simply called types over $ A $. | ||
+ | A complete type is one which is maximal consistent. Let $ S ( A ) $ | ||
+ | be the set of complete types over $ A $. | ||
− | Given a type | + | Given a type $ t = t ( x ) $ |
+ | and a formula $ \phi = \phi ( x, {\overline{y}\; } ) $, | ||
+ | one defines the Morley $ \phi $- | ||
+ | rank of $ t $, | ||
+ | $ \phi roman \AAh { \mathop{\rm rk} } ( t ) $, | ||
+ | inductively as follows: $ \phi roman \AAh { \mathop{\rm rk} } ( t ) \geq 0 $ | ||
+ | if $ t $ | ||
+ | is consistent, for each natural number $ n $, | ||
+ | $ \phi roman \AAh { \mathop{\rm rk} } ( t ) \geq n + 1 $ | ||
+ | if for every finite $ s \subset t $ | ||
+ | and natural number $ m $ | ||
+ | there are collections $ p _ {1} \dots p _ {m} $ | ||
+ | of $ \phi $- | ||
+ | formulas (with parameters from $ M $) | ||
+ | such that: | ||
− | i) for | + | i) for $ i \neq j $, |
+ | $ p _ {i} $ | ||
+ | and $ p _ {j} $ | ||
+ | are contradictory, i.e. for some $ {\overline{a}\; } $, | ||
+ | $ \phi ( x, {\overline{a}\; } ) $ | ||
+ | belongs to one of $ p _ {i} $ | ||
+ | and $ p _ {j} $, | ||
+ | and $ \neg \phi ( x, {\overline{a}\; } ) $ | ||
+ | belongs to the other; | ||
− | ii) | + | ii) $ \phi roman \AAh { \mathop{\rm rk} } ( s \cup p _ {i} ) \geq n $. |
− | Assume that | + | Assume that $ T $ |
+ | is stable, i.e. for some infinite $ \kappa $, | ||
+ | whenever $ | A | \leq \kappa $, | ||
+ | then also $ | {S ( A ) } | \leq \kappa $. | ||
+ | (Equivalently, $ \phi roman \AAh { \mathop{\rm rk} } ( t ) < \infty $ | ||
+ | for every type $ t $ | ||
+ | and formula $ \phi $.) | ||
+ | Let $ A \subset B $, | ||
+ | $ t \in S ( A ) $, | ||
+ | $ u \in S ( B ) $ | ||
+ | be such that $ u \supset t $. | ||
+ | Then $ u $ | ||
+ | is called a non-forking extension of $ t $, | ||
+ | or it is said that $ u $ | ||
+ | does not fork over $ A $, | ||
+ | if for every formula $ \phi $ | ||
+ | with $ \phi ( x, {\overline{b}\; } ) \in u $, | ||
− | + | $$ | |
+ | \phi roman \AAh { \mathop{\rm rk} } ( p ) = \phi roman \AAh { \mathop{\rm rk} } ( p \cap \phi ( x, {\overline{b}\; } ) ) , | ||
+ | $$ | ||
− | where | + | where $ p \cap \phi ( x, {\overline{b}\; } ) $ |
+ | denotes the set $ \{ {\theta \wedge \phi ( x, {\overline{b}\; } ) } : {\theta \in p } \} $. | ||
− | Let | + | Let $ t \Sbs u $ |
+ | mean that $ u $ | ||
+ | is a non-forking extension of $ t $. | ||
+ | Then $ \Sbs $ | ||
+ | is the unique relation on complete types satisfying the following Lascar axioms: | ||
− | 1) | + | 1) $ \Sbs $ |
+ | is preserved under automorphisms of $ M $; | ||
− | 2) if | + | 2) if $ t \subset u \subset v $, |
+ | then $ t \Sbs v $ | ||
+ | if and only if $ t \Sbs u $ | ||
+ | and $ u \Sbs v $; | ||
− | 3) for any | + | 3) for any $ t \in S ( A ) $ |
+ | and $ B \supset A $ | ||
+ | there exists a $ u \in S ( B ) $ | ||
+ | such that $ t \Sbs u $; | ||
− | 4) for any | + | 4) for any $ t \in S ( A ) $ |
+ | there exist countable $ A _ {0} \subset A $ | ||
+ | and $ t _ {0} \Sbs t $, | ||
+ | where $ t _ {0} $ | ||
+ | is the restriction of $ t $ | ||
+ | to formulas with parameters from $ A _ {0} $; | ||
− | 5) for any | + | 5) for any $ t \in S ( A ) $ |
+ | and $ A \subset B $, | ||
− | + | $$ | |
+ | \left | {\left \{ {u \in S ( B ) } : {t \Sbs u } \right \} } \right | \leq 2 ^ {\aleph _ {0} } . | ||
+ | $$ | ||
The ultrapower construction (cf. also [[Ultrafilter|Ultrafilter]]) gives a systematic way of building non-forking extensions [[#References|[a4]]]. | The ultrapower construction (cf. also [[Ultrafilter|Ultrafilter]]) gives a systematic way of building non-forking extensions [[#References|[a4]]]. | ||
− | For | + | For $ c \in M $ |
+ | one writes $ { \mathop{\rm tp} } ( c/A ) $ | ||
+ | for the type in $ S ( A ) $ | ||
+ | realized by $ c $. | ||
+ | Given a set $ A $ | ||
+ | and $ b,c \in M $, | ||
+ | the following important symmetry property holds: $ { \mathop{\rm tp} } ( b/A \cup \{ c \} ) $ | ||
+ | does not fork over $ A $ | ||
+ | if and only if $ { \mathop{\rm tp} } ( c/A \cup \{ b \} ) $ | ||
+ | does not fork over $ A $. | ||
+ | If either holds, one says that $ b $, | ||
+ | $ c $ | ||
+ | are independent over $ A $, | ||
+ | and this notion is viewed as a generalization of [[Algebraic independence|algebraic independence]]. | ||
− | Given | + | Given $ t \in S ( A ) $, |
+ | $ B \supset A $, | ||
+ | $ u \in S ( B ) $, | ||
+ | and $ u \supset t $, | ||
+ | one says that $ u $ | ||
+ | is an heir of $ t $ | ||
+ | if for every $ \phi ( x, {\overline{y}\; } ) $( | ||
+ | with parameters in $ A $), | ||
+ | $ \phi ( x, {\overline{b}\; } ) \in u $ | ||
+ | for some $ {\overline{b}\; } $ | ||
+ | in $ B $ | ||
+ | if and only if $ \phi ( x, {\overline{a}\; } ) \in t $ | ||
+ | for some $ {\overline{a}\; } $ | ||
+ | in $ A $. | ||
+ | One says that $ u $ | ||
+ | is definable over $ A $ | ||
+ | if for every $ \phi ( x, {\overline{y}\; } ) $ | ||
+ | there is a formula $ \theta ( {\overline{y}\; } ) $ | ||
+ | with parameters from $ A $ | ||
+ | such that for any $ {\overline{b}\; } $ | ||
+ | in $ B $, | ||
+ | $ \phi ( x, {\overline{b}\; } ) \in u $ | ||
+ | if and only if $ M \vDash \theta ( {\overline{b}\; } ) $. | ||
− | + | $ u $ | |
+ | is said to be a coheir of $ t $ | ||
+ | if $ u $ | ||
+ | is finitely satisfiable in $ A $. | ||
+ | So, for $ b,c \in M $, | ||
+ | $ { \mathop{\rm tp} } ( c/ A \cup \{ b \} ) $ | ||
+ | is an heir of $ { \mathop{\rm tp} } ( c/A ) $ | ||
+ | if and only if $ { \mathop{\rm tp} } ( b/A \cup \{ c \} ) $ | ||
+ | is a coheir of $ { \mathop{\rm tp} } ( b/A ) $. | ||
− | If | + | If $ A $ |
+ | is an elementary submodel of $ M $, | ||
+ | then $ u \Sps t $ | ||
+ | if and only if $ u $ | ||
+ | is an heir of $ t $ | ||
+ | if and only if $ u $ | ||
+ | is definable over $ A $. | ||
+ | In particular, in that case $ t $ | ||
+ | has a unique non-forking extension over any $ B \supset A $. | ||
+ | Then it follows from the forking symmetry that when $ A $ | ||
+ | is an elementary submodel, $ { \mathop{\rm tp} } ( b/A \cup \{ c \} ) $ | ||
+ | being a coheir of $ { \mathop{\rm tp} } ( b/A ) $ | ||
+ | is equivalent to being an heir. | ||
For a comprehensive introduction of forking see [[#References|[a1]]], [[#References|[a2]]], [[#References|[a4]]], [[#References|[a5]]], and [[#References|[a9]]]. For applications in algebra, see [[#References|[a7]]] and [[#References|[a6]]]. | For a comprehensive introduction of forking see [[#References|[a1]]], [[#References|[a2]]], [[#References|[a4]]], [[#References|[a5]]], and [[#References|[a9]]]. For applications in algebra, see [[#References|[a7]]] and [[#References|[a6]]]. |
Latest revision as of 19:39, 5 June 2020
(in logic)
A notion introduced by S. Shelah [a8]. The general theory of forking is also known as stability theory, but more commonly, non-forking (the negation of forking) is defined as a certain well-behaved relation between a type and its extension (cf. Types, theory of).
Let $ M $ be a sufficiently saturated model of a theory $ T $ in a countable first-order language (cf. also Formal language; Model (in logic); Model theory). Given an $ n $- tuple of variables $ {\overline{x}\; } $ and $ A \subset M $, a collection of formulas $ \phi ( {\overline{x}\; } , {\overline{a}\; } ) $ with parameters $ {\overline{a}\; } $ in $ A $ is called an $ n $- type over $ A $. For simplicity, only $ 1 $- types will be considered; these are simply called types over $ A $. A complete type is one which is maximal consistent. Let $ S ( A ) $ be the set of complete types over $ A $.
Given a type $ t = t ( x ) $ and a formula $ \phi = \phi ( x, {\overline{y}\; } ) $, one defines the Morley $ \phi $- rank of $ t $, $ \phi roman \AAh { \mathop{\rm rk} } ( t ) $, inductively as follows: $ \phi roman \AAh { \mathop{\rm rk} } ( t ) \geq 0 $ if $ t $ is consistent, for each natural number $ n $, $ \phi roman \AAh { \mathop{\rm rk} } ( t ) \geq n + 1 $ if for every finite $ s \subset t $ and natural number $ m $ there are collections $ p _ {1} \dots p _ {m} $ of $ \phi $- formulas (with parameters from $ M $) such that:
i) for $ i \neq j $, $ p _ {i} $ and $ p _ {j} $ are contradictory, i.e. for some $ {\overline{a}\; } $, $ \phi ( x, {\overline{a}\; } ) $ belongs to one of $ p _ {i} $ and $ p _ {j} $, and $ \neg \phi ( x, {\overline{a}\; } ) $ belongs to the other;
ii) $ \phi roman \AAh { \mathop{\rm rk} } ( s \cup p _ {i} ) \geq n $.
Assume that $ T $ is stable, i.e. for some infinite $ \kappa $, whenever $ | A | \leq \kappa $, then also $ | {S ( A ) } | \leq \kappa $. (Equivalently, $ \phi roman \AAh { \mathop{\rm rk} } ( t ) < \infty $ for every type $ t $ and formula $ \phi $.) Let $ A \subset B $, $ t \in S ( A ) $, $ u \in S ( B ) $ be such that $ u \supset t $. Then $ u $ is called a non-forking extension of $ t $, or it is said that $ u $ does not fork over $ A $, if for every formula $ \phi $ with $ \phi ( x, {\overline{b}\; } ) \in u $,
$$ \phi roman \AAh { \mathop{\rm rk} } ( p ) = \phi roman \AAh { \mathop{\rm rk} } ( p \cap \phi ( x, {\overline{b}\; } ) ) , $$
where $ p \cap \phi ( x, {\overline{b}\; } ) $ denotes the set $ \{ {\theta \wedge \phi ( x, {\overline{b}\; } ) } : {\theta \in p } \} $.
Let $ t \Sbs u $ mean that $ u $ is a non-forking extension of $ t $. Then $ \Sbs $ is the unique relation on complete types satisfying the following Lascar axioms:
1) $ \Sbs $ is preserved under automorphisms of $ M $;
2) if $ t \subset u \subset v $, then $ t \Sbs v $ if and only if $ t \Sbs u $ and $ u \Sbs v $;
3) for any $ t \in S ( A ) $ and $ B \supset A $ there exists a $ u \in S ( B ) $ such that $ t \Sbs u $;
4) for any $ t \in S ( A ) $ there exist countable $ A _ {0} \subset A $ and $ t _ {0} \Sbs t $, where $ t _ {0} $ is the restriction of $ t $ to formulas with parameters from $ A _ {0} $;
5) for any $ t \in S ( A ) $ and $ A \subset B $,
$$ \left | {\left \{ {u \in S ( B ) } : {t \Sbs u } \right \} } \right | \leq 2 ^ {\aleph _ {0} } . $$
The ultrapower construction (cf. also Ultrafilter) gives a systematic way of building non-forking extensions [a4].
For $ c \in M $ one writes $ { \mathop{\rm tp} } ( c/A ) $ for the type in $ S ( A ) $ realized by $ c $. Given a set $ A $ and $ b,c \in M $, the following important symmetry property holds: $ { \mathop{\rm tp} } ( b/A \cup \{ c \} ) $ does not fork over $ A $ if and only if $ { \mathop{\rm tp} } ( c/A \cup \{ b \} ) $ does not fork over $ A $. If either holds, one says that $ b $, $ c $ are independent over $ A $, and this notion is viewed as a generalization of algebraic independence.
Given $ t \in S ( A ) $, $ B \supset A $, $ u \in S ( B ) $, and $ u \supset t $, one says that $ u $ is an heir of $ t $ if for every $ \phi ( x, {\overline{y}\; } ) $( with parameters in $ A $), $ \phi ( x, {\overline{b}\; } ) \in u $ for some $ {\overline{b}\; } $ in $ B $ if and only if $ \phi ( x, {\overline{a}\; } ) \in t $ for some $ {\overline{a}\; } $ in $ A $. One says that $ u $ is definable over $ A $ if for every $ \phi ( x, {\overline{y}\; } ) $ there is a formula $ \theta ( {\overline{y}\; } ) $ with parameters from $ A $ such that for any $ {\overline{b}\; } $ in $ B $, $ \phi ( x, {\overline{b}\; } ) \in u $ if and only if $ M \vDash \theta ( {\overline{b}\; } ) $.
$ u $ is said to be a coheir of $ t $ if $ u $ is finitely satisfiable in $ A $. So, for $ b,c \in M $, $ { \mathop{\rm tp} } ( c/ A \cup \{ b \} ) $ is an heir of $ { \mathop{\rm tp} } ( c/A ) $ if and only if $ { \mathop{\rm tp} } ( b/A \cup \{ c \} ) $ is a coheir of $ { \mathop{\rm tp} } ( b/A ) $.
If $ A $ is an elementary submodel of $ M $, then $ u \Sps t $ if and only if $ u $ is an heir of $ t $ if and only if $ u $ is definable over $ A $. In particular, in that case $ t $ has a unique non-forking extension over any $ B \supset A $. Then it follows from the forking symmetry that when $ A $ is an elementary submodel, $ { \mathop{\rm tp} } ( b/A \cup \{ c \} ) $ being a coheir of $ { \mathop{\rm tp} } ( b/A ) $ is equivalent to being an heir.
For a comprehensive introduction of forking see [a1], [a2], [a4], [a5], and [a9]. For applications in algebra, see [a7] and [a6].
The techniques of forking have been extended to unstable theories. In [a2], this is done by considering only types that satisfy stable conditions. In [a3], types are viewed as probability measures and forking is treated as a special kind of measure extension. The stability assumption is then weakened to theories that do not have the independence property.
References
[a1] | J.T. Baldwin, "Fundamentals of stability theory" , Springer (1987) |
[a2] | V. Harnik, L. Harrington, "Fundamentals of forking" Ann. Pure and Applied Logic , 26 (1984) pp. 245–286 |
[a3] | H.J. Keisler, "Measures and forking" Ann. Pure and Applied Logic , 34 (1987) pp. 119–169 |
[a4] | D. Lascar, B. Poizat, "An introduction to forking" J. Symb. Logic , 44 (1979) pp. 330–350 |
[a5] | A. Pillay, "Introduction to stability theory" , Oxford Univ. Press (1983) |
[a6] | A. Pillay, "The geometry of forking and groups of finite Morley rank" J. Symb. Logic , 60 (1995) pp. 1251–1259 |
[a7] | M. Prest, "Model theory and modules" , Cambridge Univ. Press (1988) |
[a8] | S. Shelah, "Classification theory and the number of non-isomorphic models" , North-Holland (1990) (Edition: Revised) |
[a9] | M. Makkai, "A survey of basic stability theory" Israel J. Math. , 49 (1984) pp. 181–238 |
Forking. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Forking&oldid=19231