Namespaces
Variants
Actions

Difference between revisions of "Hilbert problems"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (MR/ZBL numbers added)
Line 68: Line 68:
 
Impossibility of the solution of the general equation of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120080/h1200809.png" />-th degree by means of functions of only two variables.
 
Impossibility of the solution of the general equation of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120080/h1200809.png" />-th degree by means of functions of only two variables.
  
This problem is nowadays (1998) seen as a mixture of two parts: a specific algebraic (or analytic) one concerning equations of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120080/h12008010.png" />, which remains unsolved, and a "superposition problem" : Can every continuous function in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120080/h12008011.png" /> variables be written as a superposition of continuous functions of two variables? The latter problem was solved by V.I. Arnol'd and A.N. Kolmogorov (1956–1957; see [[Composite function|Composite function]]): Each [[Continuous function|continuous function]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120080/h12008012.png" /> variables can be written as a composite (superposition) of continuous functions of two variables. The picture changes drastically if differentiability or analyticity conditions are imposed.
+
This problem is nowadays (1998) seen as a mixture of two parts: a specific algebraic (or analytic) one concerning equations of degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120080/h12008010.png" />, which remains unsolved, and a "superposition problem" : Can every continuous function in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120080/h12008011.png" /> variables be written as a superposition of continuous functions of two variables? The latter problem was solved by V.I. Arnol'd and A.N. Kolmogorov (1956–1957; see [[Composite function|Composite function]]): Each [[Continuous function|continuous function]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120080/h12008012.png" /> variables can be written as a composite (superposition) of continuous functions of two variables. The picture changes drastically if differentiability or analyticity conditions are imposed.
  
 
===Hilbert's fourteenth problem.===
 
===Hilbert's fourteenth problem.===
Line 78: Line 78:
 
Rigorous foundation of Schubert's enumerative calculus.
 
Rigorous foundation of Schubert's enumerative calculus.
  
The problem is to justify and precisize Schubert's "principle of preservation of numbers" under suitable continuous deformations. It mostly concerns intersection numbers. For instance, to prove rigorously that there are indeed, see [[#References|[a42]]], <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120080/h12008025.png" /> quadric surfaces tangent to nine given quadric surfaces in space. There are a great number of such principles of conservation of numbers in [[Intersection theory|intersection theory]] and cohomology and differential topology. Indeed, one version of another such idea is often the basis of definitions in singular cases. In spite of a great deal of progress (see [[#References|[a42]]]) there remains much to be done to obtain a true enumerative geometry such as Schubert dreamt of.
+
The problem is to justify and precisize Schubert's "principle of preservation of numbers" under suitable continuous deformations. It mostly concerns intersection numbers. For instance, to prove rigorously that there are indeed, see [[#References|[a42]]], <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120080/h12008025.png" /> quadric surfaces tangent to nine given quadric surfaces in space. There are a great number of such principles of conservation of numbers in [[Intersection theory|intersection theory]] and cohomology and differential topology. Indeed, one version of another such idea is often the basis of definitions in singular cases. In spite of a great deal of progress (see [[#References|[a42]]]) there remains much to be done to obtain a true enumerative geometry such as Schubert dreamt of.
  
 
===Hilbert's sixteenth problem.===
 
===Hilbert's sixteenth problem.===
Line 126: Line 126:
 
Solved by the work of L. Plemelj, G. Birkhoff, I. Lappo-Danilevskij, P. Deligne, and A. Bolibrukh (see [[Fuchsian equation|Fuchsian equation]]; [[#References|[a2]]], [[#References|[a5]]], [[#References|[a12]]]). The problem is also sometimes referred to as the Riemann problem or the Hilbert–Riemann problem (see [[Riemann–Hilbert problem|Riemann–Hilbert problem]]; [[Fuchsian equation|Fuchsian equation]]).
 
Solved by the work of L. Plemelj, G. Birkhoff, I. Lappo-Danilevskij, P. Deligne, and A. Bolibrukh (see [[Fuchsian equation|Fuchsian equation]]; [[#References|[a2]]], [[#References|[a5]]], [[#References|[a12]]]). The problem is also sometimes referred to as the Riemann problem or the Hilbert–Riemann problem (see [[Riemann–Hilbert problem|Riemann–Hilbert problem]]; [[Fuchsian equation|Fuchsian equation]]).
  
The solution is negative or positive depending on how the problem is understood. If extra "apparent singularities" (where the monodromy is trivial) are allowed or if linear differential equations are understood in the generalized sense of connections on non-trivial vector bundles, the solution is positive. If no apparent singularities are permitted and the underlying vector bundle must be trivial, there are counterexamples; see [[#References|[a5]]] for a very clear summing up.
+
The solution is negative or positive depending on how the problem is understood. If extra "apparent singularities" (where the monodromy is trivial) are allowed or if linear differential equations are understood in the generalized sense of connections on non-trivial vector bundles, the solution is positive. If no apparent singularities are permitted and the underlying vector bundle must be trivial, there are counterexamples; see [[#References|[a5]]] for a very clear summing up.
  
 
===Hilbert's twenty-second problem.===
 
===Hilbert's twenty-second problem.===
Line 139: Line 139:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> "Die Hilbertschen Probleme" P.S. Alexandrov (ed.) , Geest&amp;Portig (1979) (In Russian) (New ed.: H. Deutsch, 1998)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> D.V. Anosov,   A.A. Bolibrukh,   "The Riemann–Hilbert problem" , Vieweg (1994)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> V.I. Arnol'd,   Yu.S. Il'yashenko,   "Ordinary differential equations" D.V. Anosov (ed.) V.I. Arnol'd (ed.) , ''Dynamical systems I'' , Springer (1988) pp. 7–148</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> E. Artin,   "Uber die Zerlegung definiter Funktionen in Quadrate" ''Abh. Math. Sem. Univ. Hamburg'' , '''5''' (1927) pp. 100–115</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> A. Beauville,   "Equations différentielles à points singuliers réguliers d'apres Bolybrukh" ''Sem. Bourbaki'' , '''1992/3''' (1993) pp. 103–120</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> S.N. Bernstein,   "Sur la nature analytique des solutions des équations aux dérivées parteilles des second ordre" ''Math. Ann.'' , '''59''' (1904) pp. 20–76</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> L. Bieberbach,   "Über die Bewegungsgruppen des <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120080/h12008042.png" />-dimensionalen euklidisches Raumes met einem endlichen Fundamentalbereich" ''Gött. Nachr.'' (1910) pp. 75–84</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> R. Bricard,   "Sur une question de géométrie relative aux polyèdres" ''Nouv. Ann. Math.'' , '''15''' (1896) pp. 331–334</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top"> "Mathematical developments arising from Hilbert's problems" F.E. Browder (ed.) , Amer. Math. Soc. (1976)</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top"> J.H. Conway,   N.J.A. Sloane,   "Sphere packings, lattices and groups" , Springer (1988)</TD></TR><TR><TD valign="top">[a11]</TD> <TD valign="top"> M. Dehn,   "Uber den Rauminhalt" ''Math. Ann.'' , '''55''' (1901) pp. 465–478</TD></TR><TR><TD valign="top">[a12]</TD> <TD valign="top"> P. Deligne,   "Equations différentielles à points singuliers réguliers" , Springer (1970)</TD></TR><TR><TD valign="top">[a13]</TD> <TD valign="top"> L. Fejes Tóth,   "Uber einem geometrischen Satz" ''Math. Z.'' , '''46''' (1940) pp. 79–83</TD></TR><TR><TD valign="top">[a14]</TD> <TD valign="top"> N.I. Fel'dman,   Yu.V. Nestorenko,   "Transcendental numbers" , Springer (1998)</TD></TR><TR><TD valign="top">[a15]</TD> <TD valign="top"> A.M. Gleason,   "Groups without small subgroups" ''Ann. of Math.'' , '''56''' (1952) pp. 193–212</TD></TR><TR><TD valign="top">[a16]</TD> <TD valign="top"> S.W. Golomb,   "Tiling rectangles with polyominoes" ''Math. Intelligencer'' , '''18''' : 2 (1996) pp. 38–47</TD></TR><TR><TD valign="top">[a17]</TD> <TD valign="top"> H. Heesch,   "Aufbau der Ebene aus kongruenten Bereiche" ''Nachr. Ges. Wiss. Göttingen, Neue Ser. 1'' (1935) pp. 115–117</TD></TR><TR><TD valign="top">[a18]</TD> <TD valign="top"> D. Hilbert,   "Mathematische Probleme" ''Nachr. K. Ges. Wiss. Göttingen, Math.-Phys. Klasse (Göttinger Nachrichten)'' , '''3''' (1900) pp. 253–297 (Reprint: Archiv Math. Physik 3:1 (1901), 44-63; 213-237; also: Gesammelte Abh., dritter Band, Chelsea, 1965, pp. 290-329)</TD></TR><TR><TD valign="top">[a19]</TD> <TD valign="top"> D. Hilbert,   "Mathematical problems" ''Bull. Amer. Math. Soc.'' , '''8''' (1902) pp. 437–479 (Text on the web: http://aleph0.clarku.edu/djoyce/hilbert)</TD></TR><TR><TD valign="top">[a20]</TD> <TD valign="top"> J. Hirschfeld,   "The nonstandard treatment of Hilbert's fifth problem" ''Trans. Amer. Math. Soc.'' , '''321''' (1990) pp. 379–400</TD></TR><TR><TD valign="top">[a21]</TD> <TD valign="top"> R.-P. Holzapfel,   "The ball and some Hilbert problems" , Birkhäuser (1995)</TD></TR><TR><TD valign="top">[a22]</TD> <TD valign="top"> Yu. Il'yashenko,   "Finiteness theorems for limit cycles" , Amer. Math. Soc. (1991)</TD></TR><TR><TD valign="top">[a23]</TD> <TD valign="top"> "Concerning the Hilbert 16th problem" Yu. Ilyashenko (ed.) S. Yakovenko (ed.) , Amer. Math. Soc. (1995)</TD></TR><TR><TD valign="top">[a24]</TD> <TD valign="top"> J.-M. Kantor,   "Hilbert's problems and their sequels" ''Math. Intelligencer'' , '''18''' : 1 (1996) pp. 21–34</TD></TR><TR><TD valign="top">[a25]</TD> <TD valign="top"> M.M. Kapranov,   "Analogies between the Langlands correspondence and topological quantum field theory" S. Gindikhin (ed.) , ''Funct. Anal. on the Eve of the 21st Centuryy'' , '''I''' , Birkhäuser (1995) pp. 119–151</TD></TR><TR><TD valign="top">[a26]</TD> <TD valign="top"> R.B. Kershner,   "On paving the plane" ''Amer. Math. Monthly'' , '''75''' (1968) pp. 839–844</TD></TR><TR><TD valign="top">[a27]</TD> <TD valign="top"> A.W. Knapp,   "Introduction to the Langlands program" T.N. Bailey (ed.) et al. (ed.) , ''Representation theory and automorphic forms'' , Amer. Math. Soc. (1997) pp. 245–302</TD></TR><TR><TD valign="top">[a28]</TD> <TD valign="top"> R.J. Lawrence,   "An introduction to topological field theory" L.H. Kaufmann (ed.) , ''The interface of knots and physics'' , Amer. Math. Soc. (1996) pp. 89–128</TD></TR><TR><TD valign="top">[a29]</TD> <TD valign="top"> D. Montgomery,   L. Zippin,   "Small subgroups of finite dimensional groups" ''Ann. of Math.'' , '''56''' (1952) pp. 213–241</TD></TR><TR><TD valign="top">[a30]</TD> <TD valign="top"> M. Oberguggenberger,   E.E. Rosinger,   "Solutions of continuous nonlinear PDE's through order completion. Part I" ''Univ. Pretoria'' (1991)</TD></TR><TR><TD valign="top">[a31]</TD> <TD valign="top"> I.G. Petrovskij,   "Sur l'analyticité des solutions des systèmes d'équations différentielles" ''Mat. Sb.'' , '''5''' (1939) pp. 3–70</TD></TR><TR><TD valign="top">[a32]</TD> <TD valign="top"> A. Pfister,   "Zur Darstellung definiter Funktionen als Summe von Quadraten" ''Invent. Math.'' , '''4''' (1967) pp. 229–237</TD></TR><TR><TD valign="top">[a33]</TD> <TD valign="top"> T. Pheidas,   "Extensions of Hilbert's tenth problem" ''J. Symbolic Logic'' , '''59''' (1994) pp. 372–397</TD></TR><TR><TD valign="top">[a34]</TD> <TD valign="top"> A.V. Pogorelov,   "A complete solution of Hilbert's fourth problem" ''Soviet Math. Dokl.'' , '''14''' (1973) pp. 46–49</TD></TR><TR><TD valign="top">[a35]</TD> <TD valign="top"> A.V. Pogorelov,   "Hilbert's fourth problem" , Winston&amp;Wiley (1979)</TD></TR><TR><TD valign="top">[a36]</TD> <TD valign="top"> K. Reinhardt,   "Zur Zerlegung Euklische Räume in kongruente Polytope" ''Sitzungsber. Preuss. Akad. Wiss.'' (1928) pp. 150–155</TD></TR><TR><TD valign="top">[a37]</TD> <TD valign="top"> E.E. Rosinger,   "Non-linear partial differential equations" , North-Holland (1990)</TD></TR><TR><TD valign="top">[a38]</TD> <TD valign="top"> E.E. Rosinger,   "Parametric Lie group actions on global generalised solutions of nonlinear PDEs" , Kluwer Acad. Publ. (1998)</TD></TR><TR><TD valign="top">[a39]</TD> <TD valign="top"> R. Roussarie,   "Bifurcation of planar vectorfields and Hilbert's sixteenth problem" , Birkhäuser (1998)</TD></TR><TR><TD valign="top">[a40]</TD> <TD valign="top"> C.-H. Sah,   "Hilbert's third problem: scissors congruence" , Pitman (1979)</TD></TR><TR><TD valign="top">[a41]</TD> <TD valign="top"> S. Sawin,   "Links, quantum groups, and TQFT's" ''Bull. Amer. Math. Soc.'' , '''33''' : 4 (1996) pp. 413–445</TD></TR><TR><TD valign="top">[a42]</TD> <TD valign="top"> H.C.H. Schubert,   "Kalkül der abzählenden Geometrie" , Teubner (1879)</TD></TR><TR><TD valign="top">[a43]</TD> <TD valign="top"> E. Schulte,   "Tilings" P.M. Gruber (ed.) J.M. Wills (ed.) , ''Handbook of convex geometry'' , '''B''' , North-Holland (1993) pp. 899–932</TD></TR><TR><TD valign="top">[a44]</TD> <TD valign="top"> G. Segal,   "The definition of conformal field theory" K. Bleuler (ed.) M. Werner (ed.) , ''Differential Geometrical Methods in Theoretical Physiscs'' , Kluwer Acad. Publ. (1988) pp. 165–171</TD></TR><TR><TD valign="top">[a45]</TD> <TD valign="top"> G. Segal,   "Geometric aspects of quantum field theory" , ''Proc. Internat. Congress Math. Kyoto, 1990'' , '''II''' , Springer (1991) pp. 1387–1396</TD></TR><TR><TD valign="top">[a46]</TD> <TD valign="top"> I.R. Shafarevich,   "General reciprocity laws" ''Mat. Sb.'' , '''26''' (1950) pp. 13–146</TD></TR><TR><TD valign="top">[a47]</TD> <TD valign="top"> Z.I. Szabo,   "Hilbert's fourth problem" ''Adv. Math.'' , '''59''' (1986) pp. 185–301</TD></TR><TR><TD valign="top">[a48]</TD> <TD valign="top"> A. Thue,   "Uber die dichteste Suzammenstellung von kongruenten Kreisen in einer Ebene" ''Skr. Vidensk–Selsk Christ.'' , '''1''' (1910) pp. 1–9</TD></TR><TR><TD valign="top">[a49]</TD> <TD valign="top"> R. Tijdeman,   "The Gel'fond–Baker method" F.E. Browder (ed.) , ''Mathematical developments arising from Hilbert's problems'' , Amer. Math. Soc. (1976) pp. 241–268</TD></TR><TR><TD valign="top">[a50]</TD> <TD valign="top"> V.G. Turaev,   "Quantum invariants of knots and 3-manifolds" , W. de Gruyter (1994) pp. Chap. II</TD></TR><TR><TD valign="top">[a51]</TD> <TD valign="top"> A.S. Wightman,   "Hilbert's sixth problem" F.E. Browder (ed.) , ''Mathematical developments arising from Hilbert's problems'' , Amer. Math. Soc. (1976) pp. 147–240</TD></TR><TR><TD valign="top">[a52]</TD> <TD valign="top"> E. Witten,   "Topological quantum field theory" ''Comm. Math. Phys.'' , '''117''' (1988) pp. 353–386</TD></TR></table>
+
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> "Die Hilbertschen Probleme" P.S. Alexandrov (ed.) , Geest&amp;Portig (1979) (In Russian) (New ed.: H. Deutsch, 1998) {{MR|0563859}} {{ZBL|0434.00004}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> D.V. Anosov, A.A. Bolibrukh, "The Riemann–Hilbert problem" , Vieweg (1994) {{MR|1276272}} {{ZBL|0801.34002}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> V.I. Arnol'd, Yu.S. Il'yashenko, "Ordinary differential equations" D.V. Anosov (ed.) V.I. Arnol'd (ed.) , ''Dynamical systems I'' , Springer (1988) pp. 7–148 {{MR|}} {{ZBL|0659.58012}} </TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> E. Artin, "Uber die Zerlegung definiter Funktionen in Quadrate" ''Abh. Math. Sem. Univ. Hamburg'' , '''5''' (1927) pp. 100–115 {{MR|}} {{ZBL|52.0122.01}} </TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> A. Beauville, "Equations différentielles à points singuliers réguliers d'apres Bolybrukh" ''Sem. Bourbaki'' , '''1992/3''' (1993) pp. 103–120</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> S.N. Bernstein, "Sur la nature analytique des solutions des équations aux dérivées parteilles des second ordre" ''Math. Ann.'' , '''59''' (1904) pp. 20–76</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> L. Bieberbach, "Über die Bewegungsgruppen des <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/h/h120/h120080/h12008042.png" />-dimensionalen euklidisches Raumes met einem endlichen Fundamentalbereich" ''Gött. Nachr.'' (1910) pp. 75–84</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> R. Bricard, "Sur une question de géométrie relative aux polyèdres" ''Nouv. Ann. Math.'' , '''15''' (1896) pp. 331–334 {{MR|}} {{ZBL|27.0407.02}} </TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top"> "Mathematical developments arising from Hilbert's problems" F.E. Browder (ed.) , Amer. Math. Soc. (1976) {{MR|419125}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top"> J.H. Conway, N.J.A. Sloane, "Sphere packings, lattices and groups" , Springer (1988) {{MR|0920369}} {{ZBL|0634.52002}} </TD></TR><TR><TD valign="top">[a11]</TD> <TD valign="top"> M. Dehn, "Uber den Rauminhalt" ''Math. Ann.'' , '''55''' (1901) pp. 465–478 {{MR|}} {{ZBL|32.0486.01}} </TD></TR><TR><TD valign="top">[a12]</TD> <TD valign="top"> P. Deligne, "Equations différentielles à points singuliers réguliers" , Springer (1970) {{MR|0417174}} {{ZBL|0244.14004}} </TD></TR><TR><TD valign="top">[a13]</TD> <TD valign="top"> L. Fejes Tóth, "Uber einem geometrischen Satz" ''Math. Z.'' , '''46''' (1940) pp. 79–83</TD></TR><TR><TD valign="top">[a14]</TD> <TD valign="top"> N.I. Fel'dman, Yu.V. Nestorenko, "Transcendental numbers" , Springer (1998) {{MR|}} {{ZBL|0885.11004}} </TD></TR><TR><TD valign="top">[a15]</TD> <TD valign="top"> A.M. Gleason, "Groups without small subgroups" ''Ann. of Math.'' , '''56''' (1952) pp. 193–212 {{MR|0049203}} {{ZBL|0049.30105}} </TD></TR><TR><TD valign="top">[a16]</TD> <TD valign="top"> S.W. Golomb, "Tiling rectangles with polyominoes" ''Math. Intelligencer'' , '''18''' : 2 (1996) pp. 38–47 {{MR|1395089}} {{ZBL|0883.01025}} </TD></TR><TR><TD valign="top">[a17]</TD> <TD valign="top"> H. Heesch, "Aufbau der Ebene aus kongruenten Bereiche" ''Nachr. Ges. Wiss. Göttingen, Neue Ser. 1'' (1935) pp. 115–117</TD></TR><TR><TD valign="top">[a18]</TD> <TD valign="top"> D. Hilbert, "Mathematische Probleme" ''Nachr. K. Ges. Wiss. Göttingen, Math.-Phys. Klasse (Göttinger Nachrichten)'' , '''3''' (1900) pp. 253–297 (Reprint: Archiv Math. Physik 3:1 (1901), 44-63; 213-237; also: Gesammelte Abh., dritter Band, Chelsea, 1965, pp. 290-329) {{MR|}} {{ZBL|31.0068.03}} </TD></TR><TR><TD valign="top">[a19]</TD> <TD valign="top"> D. Hilbert, "Mathematical problems" ''Bull. Amer. Math. Soc.'' , '''8''' (1902) pp. 437–479 (Text on the web: http://aleph0.clarku.edu/djoyce/hilbert) {{MR|1557926}} {{ZBL|33.0976.07}} </TD></TR><TR><TD valign="top">[a20]</TD> <TD valign="top"> J. Hirschfeld, "The nonstandard treatment of Hilbert's fifth problem" ''Trans. Amer. Math. Soc.'' , '''321''' (1990) pp. 379–400 {{MR|967314}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a21]</TD> <TD valign="top"> R.-P. Holzapfel, "The ball and some Hilbert problems" , Birkhäuser (1995) {{MR|1350073}} {{ZBL|0905.14013}} </TD></TR><TR><TD valign="top">[a22]</TD> <TD valign="top"> Yu. Il'yashenko, "Finiteness theorems for limit cycles" , Amer. Math. Soc. (1991) {{MR|}} {{ZBL|0753.34015}} {{ZBL|0743.34036}} {{ZBL|0768.34017}} </TD></TR><TR><TD valign="top">[a23]</TD> <TD valign="top"> "Concerning the Hilbert 16th problem" Yu. Ilyashenko (ed.) S. Yakovenko (ed.) , Amer. Math. Soc. (1995) {{MR|1334338}} {{ZBL|0819.00005}} </TD></TR><TR><TD valign="top">[a24]</TD> <TD valign="top"> J.-M. Kantor, "Hilbert's problems and their sequels" ''Math. Intelligencer'' , '''18''' : 1 (1996) pp. 21–34 {{MR|1381576}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a25]</TD> <TD valign="top"> M.M. Kapranov, "Analogies between the Langlands correspondence and topological quantum field theory" S. Gindikhin (ed.) , ''Funct. Anal. on the Eve of the 21st Centuryy'' , '''I''' , Birkhäuser (1995) pp. 119–151 {{MR|1373001}} {{ZBL|0858.11062}} </TD></TR><TR><TD valign="top">[a26]</TD> <TD valign="top"> R.B. Kershner, "On paving the plane" ''Amer. Math. Monthly'' , '''75''' (1968) pp. 839–844 {{MR|0236822}} {{ZBL|0165.23801}} </TD></TR><TR><TD valign="top">[a27]</TD> <TD valign="top"> A.W. Knapp, "Introduction to the Langlands program" T.N. Bailey (ed.) et al. (ed.) , ''Representation theory and automorphic forms'' , Amer. Math. Soc. (1997) pp. 245–302 {{MR|1476501}} {{ZBL|0903.11015}} </TD></TR><TR><TD valign="top">[a28]</TD> <TD valign="top"> R.J. Lawrence, "An introduction to topological field theory" L.H. Kaufmann (ed.) , ''The interface of knots and physics'' , Amer. Math. Soc. (1996) pp. 89–128 {{MR|1372766}} {{ZBL|0844.57021}} </TD></TR><TR><TD valign="top">[a29]</TD> <TD valign="top"> D. Montgomery, L. Zippin, "Small subgroups of finite dimensional groups" ''Ann. of Math.'' , '''56''' (1952) pp. 213–241 {{MR|0049204}} {{MR|0047059}} {{ZBL|0049.30107}} {{ZBL|0049.30106}} </TD></TR><TR><TD valign="top">[a30]</TD> <TD valign="top"> M. Oberguggenberger, E.E. Rosinger, "Solutions of continuous nonlinear PDE's through order completion. Part I" ''Univ. Pretoria'' (1991)</TD></TR><TR><TD valign="top">[a31]</TD> <TD valign="top"> I.G. Petrovskij, "Sur l'analyticité des solutions des systèmes d'équations différentielles" ''Mat. Sb.'' , '''5''' (1939) pp. 3–70</TD></TR><TR><TD valign="top">[a32]</TD> <TD valign="top"> A. Pfister, "Zur Darstellung definiter Funktionen als Summe von Quadraten" ''Invent. Math.'' , '''4''' (1967) pp. 229–237 {{MR|0222043}} {{ZBL|0222.10022}} </TD></TR><TR><TD valign="top">[a33]</TD> <TD valign="top"> T. Pheidas, "Extensions of Hilbert's tenth problem" ''J. Symbolic Logic'' , '''59''' (1994) pp. 372–397 {{MR|1276621}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a34]</TD> <TD valign="top"> A.V. Pogorelov, "A complete solution of Hilbert's fourth problem" ''Soviet Math. Dokl.'' , '''14''' (1973) pp. 46–49 {{MR|317256}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a35]</TD> <TD valign="top"> A.V. Pogorelov, "Hilbert's fourth problem" , Winston&amp;Wiley (1979) {{MR|550440}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a36]</TD> <TD valign="top"> K. Reinhardt, "Zur Zerlegung Euklische Räume in kongruente Polytope" ''Sitzungsber. Preuss. Akad. Wiss.'' (1928) pp. 150–155</TD></TR><TR><TD valign="top">[a37]</TD> <TD valign="top"> E.E. Rosinger, "Non-linear partial differential equations" , North-Holland (1990) {{MR|1091547}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a38]</TD> <TD valign="top"> E.E. Rosinger, "Parametric Lie group actions on global generalised solutions of nonlinear PDEs" , Kluwer Acad. Publ. (1998) {{MR|1658516}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a39]</TD> <TD valign="top"> R. Roussarie, "Bifurcation of planar vectorfields and Hilbert's sixteenth problem" , Birkhäuser (1998) {{MR|1628014}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a40]</TD> <TD valign="top"> C.-H. Sah, "Hilbert's third problem: scissors congruence" , Pitman (1979) {{MR|554756}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a41]</TD> <TD valign="top"> S. Sawin, "Links, quantum groups, and TQFT's" ''Bull. Amer. Math. Soc.'' , '''33''' : 4 (1996) pp. 413–445 {{MR|1388838}} {{ZBL|0872.57002}} </TD></TR><TR><TD valign="top">[a42]</TD> <TD valign="top"> H.C.H. Schubert, "Kalkül der abzählenden Geometrie" , Teubner (1879) {{MR|0555576}} {{ZBL|0417.51008}} </TD></TR><TR><TD valign="top">[a43]</TD> <TD valign="top"> E. Schulte, "Tilings" P.M. Gruber (ed.) J.M. Wills (ed.) , ''Handbook of convex geometry'' , '''B''' , North-Holland (1993) pp. 899–932 {{MR|1242999}} {{ZBL|0791.52015}} </TD></TR><TR><TD valign="top">[a44]</TD> <TD valign="top"> G. Segal, "The definition of conformal field theory" K. Bleuler (ed.) M. Werner (ed.) , ''Differential Geometrical Methods in Theoretical Physiscs'' , Kluwer Acad. Publ. (1988) pp. 165–171 {{MR|0981378}} {{ZBL|0657.53060}} </TD></TR><TR><TD valign="top">[a45]</TD> <TD valign="top"> G. Segal, "Geometric aspects of quantum field theory" , ''Proc. Internat. Congress Math. Kyoto, 1990'' , '''II''' , Springer (1991) pp. 1387–1396 {{MR|1159323}} {{ZBL|0757.53048}} </TD></TR><TR><TD valign="top">[a46]</TD> <TD valign="top"> I.R. Shafarevich, "General reciprocity laws" ''Mat. Sb.'' , '''26''' (1950) pp. 13–146</TD></TR><TR><TD valign="top">[a47]</TD> <TD valign="top"> Z.I. Szabo, "Hilbert's fourth problem" ''Adv. Math.'' , '''59''' (1986) pp. 185–301</TD></TR><TR><TD valign="top">[a48]</TD> <TD valign="top"> A. Thue, "Uber die dichteste Suzammenstellung von kongruenten Kreisen in einer Ebene" ''Skr. Vidensk–Selsk Christ.'' , '''1''' (1910) pp. 1–9</TD></TR><TR><TD valign="top">[a49]</TD> <TD valign="top"> R. Tijdeman, "The Gel'fond–Baker method" F.E. Browder (ed.) , ''Mathematical developments arising from Hilbert's problems'' , Amer. Math. Soc. (1976) pp. 241–268 {{MR|}} {{ZBL|0341.10026}} {{ZBL|0335.10022}} </TD></TR><TR><TD valign="top">[a50]</TD> <TD valign="top"> V.G. Turaev, "Quantum invariants of knots and 3-manifolds" , W. de Gruyter (1994) pp. Chap. II {{MR|1292673}} {{ZBL|0812.57003}} </TD></TR><TR><TD valign="top">[a51]</TD> <TD valign="top"> A.S. Wightman, "Hilbert's sixth problem" F.E. Browder (ed.) , ''Mathematical developments arising from Hilbert's problems'' , Amer. Math. Soc. (1976) pp. 147–240</TD></TR><TR><TD valign="top">[a52]</TD> <TD valign="top"> E. Witten, "Topological quantum field theory" ''Comm. Math. Phys.'' , '''117''' (1988) pp. 353–386 {{MR|0953828}} {{ZBL|0656.53078}} </TD></TR></table>

Revision as of 17:33, 31 March 2012

At the 1990 International Congress of Mathematicians in Paris, D. Hilbert presented a list of open problems. The published version [a18] contains 23 problems, though at the meeting Hilbert discussed but of them (problems 1, 2, 6, 7, 8, 13, 16, 19, 21, 22). For a translation, see [a19]. These 23 problems, together with short, mainly bibliographical comments, are briefly listed below, using the short title descriptions from [a19].

Three general references are [a1] (all 23 problems), [a9] (all problems except 1, 3, 16), [a24] (all problems except 4, 9, 14; with special emphasis on developments from 1975–1992).

Hilbert's first problem.

Cantor's problem on the cardinal number of the continuum.

More colloquially also known as the continuum hypothesis. Solved by K. Gödel and P.J. Cohen in the (unexpected) sense that the continuum hypothesis is independent of the Zermelo–Frankel axioms. See also Set theory.

Hilbert's second problem.

The compatibility of the arithmetical axioms.

Solved (in a negative sense) by K. Gödel (see Gödel incompleteness theorem). Positive results (using techniques that Hilbert would not have allowed) are due to G. Gentzen (1936) and P.S. Novikov (1941), see [a1], [a9].

Hilbert's third problem.

The equality of the volumes of two tetrahedra of equal bases and equal altitudes.

Solved in the negative sense by Hilbert's student M. Dehn (actually before Hilbert's lecture was delivered, in 1900; [a11]) and R. Bricard (1896; [a8]). The study of this problem led to scissors-congruence problems, [a40], and scissors-congruence invariants, of which the Dehn invariant is one example. See also Equal content and equal shape, figures of.

Hilbert's fourth problem.

The problem of the straight line as the shortest distance between two points.

This problem asks for the construction of all metrics in which the usual lines of projective space (or pieces of them) are geodesics. Final solution by A.V. Pogorelov (1973; [a34]). See Desargues geometry and [a35], [a47]. See also Hilbert geometry; Minkowski geometry.

Hilbert's fifth problem.

Lie's concept of a continuous group of transformations without the assumption of the differentiability of the functions defining the group.

Solved by A.M. Gleason and D. Montgomery and L. Zippin, (1952; [a15], [a29]), in the form of the following theorem: Every locally Euclidean topological group is a Lie group and even a real-analytic group (see also Analytic group; Topological group). For a much simplified (but non-standard) treatment, see [a20].

Hilbert's sixth problem.

mathematical treatment of the axioms of physics.

Very far from solved in any way (1998), though there are (many bits and pieces of) axiom systems that have been investigated in depth. See [a51] for an extensive discussion of Hilbert's own ideas, von Neumann's work and much more. For the Wightman axioms (also called Gårding–Wightman axioms) and the Osterwalder–Schrader axioms of quantum field theory see Constructive quantum field theory; Quantum field theory, axioms for. Currently (1998) there is a great deal of interest and activity in (the axiomatic approach represented by) topological quantum field theory and conformal quantum field theory; see e.g. [a28], [a41], [a44], [a45], [a50], [a52]. Seeing probability theory as an important tool in physics, Kolmogorov's axiomatization of probability theory is an important positive contribution (see also Probability space).

Hilbert's seventh problem.

Irrationality and transcendence of certain numbers.

The numbers in question are of the form with algebraic and algebraic and irrational (cf. also Algebraic number; Irrational number). For instance, and . Solved by A.O. Gel'fond and Th. Schneider (the Gel'fond–Schneider theorem, 1934; see Analytic number theory). For the general method, the Gel'fond–Baker method, see e.g. [a49]. A large part of [a14] is devoted to Hilbert's seventh problem and related questions.

Hilbert's eighth problem.

Problems of prime numbers (cf. also Prime number).

This one is usually known as the Riemann hypothesis (cf. also Riemann hypotheses) and is the most famous and important of the yet (1998) unsolved conjectures in mathematics. Its algebraic-geometric analogue, the Weil conjectures, were settled by P. Deligne (1973). See Zeta-function.

Hilbert's ninth problem.

Proof of the most general law of reciprocity in any number field

Solved by E. Artin (1927; see Reciprocity laws). See also Class field theory, which also is relevant for the 12th problem. The analogous question for function fields was settled by I.R. Shafarevich (the Shafarevich reciprocity law, 1948); see [a46]. All this concerns Abelian field extensions. The matter of reciprocity laws and symbols for non-Abelian field extensions more properly fits into non-Abelian class field theory and the Langlands program, see also below.

Hilbert's tenth problem.

Determination of the solvability of a Diophantine equation.

Solved (in the negative sense) by Yu. Matiyasevich (1970; see Diophantine set; Algorithmic problem). For a discussion of various refinements and extensions, see [a33].

For the ring of algebraic integers there is, contrary to the case of the integers , a positive solution to Hilbert's tenth problem; cf. Local-global principles for the ring of algebraic integers.

Hilbert's eleventh problem.

Quadratic forms with any algebraic numerical coefficients.

This asks for the classification of quadratic forms over algebraic number fields. Partially solved. The Hasse–Minkowski theorem (see Quadratic form) reduces the classification of quadratic forms over a global field to that over local fields. This represents the historically first instance of the Hasse principle.

Hilbert's twelfth problem.

Extension of the Kronecker theorem on Abelian fields to any algebraic realm of rationality.

For Abelian extensions of number fields (more generally, global fields and also local fields) this is (more or less) the issue of class field theory. For non-Abelian extensions, i.e. non-Abelian class field theory and the much therewith intertwined Langlands program (Langlands correspondence, Langlands–Weil conjectures, Deligne–Langlands conjecture), see e.g. [a25], [a27]. See also [a21] for two complex variable functions for the explicit generation of class fields.

Hilbert's thirteenth problem.

Impossibility of the solution of the general equation of the -th degree by means of functions of only two variables.

This problem is nowadays (1998) seen as a mixture of two parts: a specific algebraic (or analytic) one concerning equations of degree , which remains unsolved, and a "superposition problem" : Can every continuous function in variables be written as a superposition of continuous functions of two variables? The latter problem was solved by V.I. Arnol'd and A.N. Kolmogorov (1956–1957; see Composite function): Each continuous function of variables can be written as a composite (superposition) of continuous functions of two variables. The picture changes drastically if differentiability or analyticity conditions are imposed.

Hilbert's fourteenth problem.

Proof of the finiteness of certain complete systems of functions.

The precise form of the problem is as follows: Let be a field in between a field and the field of rational functions in variables over : . Is it true that is finitely generated over ? The motivation came from positive answers in a number of important cases where there is a group, , acting on and is the field of -invariant rational functions. A counterexample, precisely in this setting of rings of invariants, was given by M. Nagata (1959). See Invariants, theory of; see also Mumford hypothesis for a large class of invariant-theoretic cases where finite generation is true.

Hilbert's fifteenth problem.

Rigorous foundation of Schubert's enumerative calculus.

The problem is to justify and precisize Schubert's "principle of preservation of numbers" under suitable continuous deformations. It mostly concerns intersection numbers. For instance, to prove rigorously that there are indeed, see [a42], quadric surfaces tangent to nine given quadric surfaces in space. There are a great number of such principles of conservation of numbers in intersection theory and cohomology and differential topology. Indeed, one version of another such idea is often the basis of definitions in singular cases. In spite of a great deal of progress (see [a42]) there remains much to be done to obtain a true enumerative geometry such as Schubert dreamt of.

Hilbert's sixteenth problem.

Problem of the topology of algebraic curves and surfaces.

Even in its original formulation, this problem splits into two parts.

First, the topology of real algebraic varieties. For instance, an algebraic real curve in the projective plane splits up in a number of ovals (topological circles) and the question is which configurations are possible. For degree six this was finally solved by D.A. Gudkov (1970; see Real algebraic variety).

The second part concerns the topology of limit cycles of dynamical systems (see Limit cycle). A first problem here is the Dulac conjecture on the finiteness of the number of limit cycles of vector fields in the plane. For polynomial vector fields this was settled in the positive sense by Yu.S. Il'yashenko (1970). See [a3], [a22], [a23], [a39].

Hilbert's seventeenth problem.

Expression of definite forms by squares.

Solved by E. Artin (1927, [a4]; see Artin–Schreier theory). The study of this problem led to the theory of formally real fields (see also Ordered field). For a definite function on a real irreducible algebraic variety of dimension , the Pfister theorem says that no more than terms are needed to express it as a sum of squares, [a32].

Hilbert's eighteenth problem.

Building up of space from congruent polyhedra.

This problem has three parts (in its original formulation).

a) Show that there are only finitely many types of subgroups of the group of isometries of with compact fundamental domain. Solved by L. Bieberbach, (1910, [a7]). The subgroups in question are now called Bieberbach groups, see (the editorial comments to) Space forms.

b) Tiling of space by a single polyhedron which is not a fundamental domain as in a). More generally, also non-periodic tilings of space are considered. A monohedral tiling is a tiling in which all tiles are congruent to one fixed set . If, moreover, the tiling is not one that comes from a fundamental domain of a group of motions, one speaks of an anisohedral tiling. In one sense, b) was settled by K. Reinhardt (1928, [a36]), who found an anisohedral tiling in , and H. Heesch (1935, [a17]), who found a non-convex anisohedral polygon in the plane that admits a periodic monohedral tiling,. There also exists convex anisohedral pentagons, [a26].

On the other hand, this circle of problems is still is a very lively topic (as of 1998), see [a43] for a recent survey. See also (the editorial comments to) Packing; Geometry of numbers.

For instance, the convex polytopes that can give a monohedral tiling of have not as yet (1998) been classified, even for the plane.

One important theory that emerged is that of Penrose tilings and quasi-crystals, see Penrose tiling. As another example of one of the problems that emerged, it is as yet (1998) unknown which polyominos tile the whole plane, [a16]. (A polyomino is a connected figure obtained by taking identical unit squares and connecting them along common edges.)

c) Densest packing of spheres. Still (1998) unsolved in general. The densest packing of circles in the plane is the familiar hexagonal one, as proved by A. Thue (1910, completed by L. Fejes-Tóth in 1940; [a13], [a48]). Conjecturally, the densest packing in three-dimensional space is the lattice packing , the face-centred cubic. The Leech lattice is conjecturally the densest packing in dimensions. The densest lattice packing in dimensions are known. In dimensions , , there are packings that are denser than any lattice packing. See the standard reference [a10]. See also Voronoi lattice types; Geometry of numbers.

Hilbert's nineteenth problem.

Are the solutions of the regular problems in the calculus of variations always necessarily analytic.

This problem links to the th problem through the Euler–Lagrange equation of the variational calculus, see Euler equation. Positive results on the analyticity for non-linear elliptic partial equations were first obtained by S.N. Bernshtein (1903) and, in more or less definite form, by I.G. Petrovskii (1937), [a6], [a31]. See also Elliptic partial differential equation; Boundary value problem, elliptic equations.

Hilbert's twentieth problem.

The general problem of boundary values.

In 1900, the general matter of boundary value problems and generalized solutions to differential equations, as Hilbert wisely specified, was in its very beginning. The amount of work accomplished since is enormous in achievement and volume and includes generalized solution ideas such as distributions (see Generalized function) and, rather recently (1998) for the non-linear case, generalized function algebras [a30], [a37], [a38]. See also, Boundary value problem, complex-variable methods; Boundary value problem, elliptic equations; Boundary value problem, ordinary differential equations; Boundary value problem, partial differential equations; Boundary value problems in potential theory; Plateau problem.

Hilbert's twenty-first problem.

Proof of the existence of linear differential equations having a prescribed monodromy group.

Solved by the work of L. Plemelj, G. Birkhoff, I. Lappo-Danilevskij, P. Deligne, and A. Bolibrukh (see Fuchsian equation; [a2], [a5], [a12]). The problem is also sometimes referred to as the Riemann problem or the Hilbert–Riemann problem (see Riemann–Hilbert problem; Fuchsian equation).

The solution is negative or positive depending on how the problem is understood. If extra "apparent singularities" (where the monodromy is trivial) are allowed or if linear differential equations are understood in the generalized sense of connections on non-trivial vector bundles, the solution is positive. If no apparent singularities are permitted and the underlying vector bundle must be trivial, there are counterexamples; see [a5] for a very clear summing up.

Hilbert's twenty-second problem.

Uniformization of analytic relations by means of automorphic functions.

This is the uniformization problem, i.e representing an algebraic or analytic manifold parametrically by single-valued functions. The dimension-one case was solved by H. Poincaré and P. Koebe (1907) in the form of the Koebe general uniformization theorem: A Riemann surface topologically equivalent to a domain in the extended complex plane is also conformally equivalent to such a domain, and the Poincaré-Koebe theorem or Klein–Poincaré uniformization theorem (see Uniformization; Discrete group of transformations). For higher (complex) dimension, things are still (1998) largely open and that also holds for a variety of generalizations, [a1], [a9].

Hilbert's twenty-third problem.

Further development of the methods of the calculus of variations.

Though there were already in 1900 a great many results in the calculus of variations, very much more has been developed since. See Variational calculus for developments in the theory of variational problems as classically understood; see Variational calculus in the large for the global analysis problems that emerged later. For the much related topic of optimal control, see Optimal control; Optimal control, mathematical theory of; Pontryagin maximum principle.

References

[a1] "Die Hilbertschen Probleme" P.S. Alexandrov (ed.) , Geest&Portig (1979) (In Russian) (New ed.: H. Deutsch, 1998) MR0563859 Zbl 0434.00004
[a2] D.V. Anosov, A.A. Bolibrukh, "The Riemann–Hilbert problem" , Vieweg (1994) MR1276272 Zbl 0801.34002
[a3] V.I. Arnol'd, Yu.S. Il'yashenko, "Ordinary differential equations" D.V. Anosov (ed.) V.I. Arnol'd (ed.) , Dynamical systems I , Springer (1988) pp. 7–148 Zbl 0659.58012
[a4] E. Artin, "Uber die Zerlegung definiter Funktionen in Quadrate" Abh. Math. Sem. Univ. Hamburg , 5 (1927) pp. 100–115 Zbl 52.0122.01
[a5] A. Beauville, "Equations différentielles à points singuliers réguliers d'apres Bolybrukh" Sem. Bourbaki , 1992/3 (1993) pp. 103–120
[a6] S.N. Bernstein, "Sur la nature analytique des solutions des équations aux dérivées parteilles des second ordre" Math. Ann. , 59 (1904) pp. 20–76
[a7] L. Bieberbach, "Über die Bewegungsgruppen des -dimensionalen euklidisches Raumes met einem endlichen Fundamentalbereich" Gött. Nachr. (1910) pp. 75–84
[a8] R. Bricard, "Sur une question de géométrie relative aux polyèdres" Nouv. Ann. Math. , 15 (1896) pp. 331–334 Zbl 27.0407.02
[a9] "Mathematical developments arising from Hilbert's problems" F.E. Browder (ed.) , Amer. Math. Soc. (1976) MR419125
[a10] J.H. Conway, N.J.A. Sloane, "Sphere packings, lattices and groups" , Springer (1988) MR0920369 Zbl 0634.52002
[a11] M. Dehn, "Uber den Rauminhalt" Math. Ann. , 55 (1901) pp. 465–478 Zbl 32.0486.01
[a12] P. Deligne, "Equations différentielles à points singuliers réguliers" , Springer (1970) MR0417174 Zbl 0244.14004
[a13] L. Fejes Tóth, "Uber einem geometrischen Satz" Math. Z. , 46 (1940) pp. 79–83
[a14] N.I. Fel'dman, Yu.V. Nestorenko, "Transcendental numbers" , Springer (1998) Zbl 0885.11004
[a15] A.M. Gleason, "Groups without small subgroups" Ann. of Math. , 56 (1952) pp. 193–212 MR0049203 Zbl 0049.30105
[a16] S.W. Golomb, "Tiling rectangles with polyominoes" Math. Intelligencer , 18 : 2 (1996) pp. 38–47 MR1395089 Zbl 0883.01025
[a17] H. Heesch, "Aufbau der Ebene aus kongruenten Bereiche" Nachr. Ges. Wiss. Göttingen, Neue Ser. 1 (1935) pp. 115–117
[a18] D. Hilbert, "Mathematische Probleme" Nachr. K. Ges. Wiss. Göttingen, Math.-Phys. Klasse (Göttinger Nachrichten) , 3 (1900) pp. 253–297 (Reprint: Archiv Math. Physik 3:1 (1901), 44-63; 213-237; also: Gesammelte Abh., dritter Band, Chelsea, 1965, pp. 290-329) Zbl 31.0068.03
[a19] D. Hilbert, "Mathematical problems" Bull. Amer. Math. Soc. , 8 (1902) pp. 437–479 (Text on the web: http://aleph0.clarku.edu/djoyce/hilbert) MR1557926 Zbl 33.0976.07
[a20] J. Hirschfeld, "The nonstandard treatment of Hilbert's fifth problem" Trans. Amer. Math. Soc. , 321 (1990) pp. 379–400 MR967314
[a21] R.-P. Holzapfel, "The ball and some Hilbert problems" , Birkhäuser (1995) MR1350073 Zbl 0905.14013
[a22] Yu. Il'yashenko, "Finiteness theorems for limit cycles" , Amer. Math. Soc. (1991) Zbl 0753.34015 Zbl 0743.34036 Zbl 0768.34017
[a23] "Concerning the Hilbert 16th problem" Yu. Ilyashenko (ed.) S. Yakovenko (ed.) , Amer. Math. Soc. (1995) MR1334338 Zbl 0819.00005
[a24] J.-M. Kantor, "Hilbert's problems and their sequels" Math. Intelligencer , 18 : 1 (1996) pp. 21–34 MR1381576
[a25] M.M. Kapranov, "Analogies between the Langlands correspondence and topological quantum field theory" S. Gindikhin (ed.) , Funct. Anal. on the Eve of the 21st Centuryy , I , Birkhäuser (1995) pp. 119–151 MR1373001 Zbl 0858.11062
[a26] R.B. Kershner, "On paving the plane" Amer. Math. Monthly , 75 (1968) pp. 839–844 MR0236822 Zbl 0165.23801
[a27] A.W. Knapp, "Introduction to the Langlands program" T.N. Bailey (ed.) et al. (ed.) , Representation theory and automorphic forms , Amer. Math. Soc. (1997) pp. 245–302 MR1476501 Zbl 0903.11015
[a28] R.J. Lawrence, "An introduction to topological field theory" L.H. Kaufmann (ed.) , The interface of knots and physics , Amer. Math. Soc. (1996) pp. 89–128 MR1372766 Zbl 0844.57021
[a29] D. Montgomery, L. Zippin, "Small subgroups of finite dimensional groups" Ann. of Math. , 56 (1952) pp. 213–241 MR0049204 MR0047059 Zbl 0049.30107 Zbl 0049.30106
[a30] M. Oberguggenberger, E.E. Rosinger, "Solutions of continuous nonlinear PDE's through order completion. Part I" Univ. Pretoria (1991)
[a31] I.G. Petrovskij, "Sur l'analyticité des solutions des systèmes d'équations différentielles" Mat. Sb. , 5 (1939) pp. 3–70
[a32] A. Pfister, "Zur Darstellung definiter Funktionen als Summe von Quadraten" Invent. Math. , 4 (1967) pp. 229–237 MR0222043 Zbl 0222.10022
[a33] T. Pheidas, "Extensions of Hilbert's tenth problem" J. Symbolic Logic , 59 (1994) pp. 372–397 MR1276621
[a34] A.V. Pogorelov, "A complete solution of Hilbert's fourth problem" Soviet Math. Dokl. , 14 (1973) pp. 46–49 MR317256
[a35] A.V. Pogorelov, "Hilbert's fourth problem" , Winston&Wiley (1979) MR550440
[a36] K. Reinhardt, "Zur Zerlegung Euklische Räume in kongruente Polytope" Sitzungsber. Preuss. Akad. Wiss. (1928) pp. 150–155
[a37] E.E. Rosinger, "Non-linear partial differential equations" , North-Holland (1990) MR1091547
[a38] E.E. Rosinger, "Parametric Lie group actions on global generalised solutions of nonlinear PDEs" , Kluwer Acad. Publ. (1998) MR1658516
[a39] R. Roussarie, "Bifurcation of planar vectorfields and Hilbert's sixteenth problem" , Birkhäuser (1998) MR1628014
[a40] C.-H. Sah, "Hilbert's third problem: scissors congruence" , Pitman (1979) MR554756
[a41] S. Sawin, "Links, quantum groups, and TQFT's" Bull. Amer. Math. Soc. , 33 : 4 (1996) pp. 413–445 MR1388838 Zbl 0872.57002
[a42] H.C.H. Schubert, "Kalkül der abzählenden Geometrie" , Teubner (1879) MR0555576 Zbl 0417.51008
[a43] E. Schulte, "Tilings" P.M. Gruber (ed.) J.M. Wills (ed.) , Handbook of convex geometry , B , North-Holland (1993) pp. 899–932 MR1242999 Zbl 0791.52015
[a44] G. Segal, "The definition of conformal field theory" K. Bleuler (ed.) M. Werner (ed.) , Differential Geometrical Methods in Theoretical Physiscs , Kluwer Acad. Publ. (1988) pp. 165–171 MR0981378 Zbl 0657.53060
[a45] G. Segal, "Geometric aspects of quantum field theory" , Proc. Internat. Congress Math. Kyoto, 1990 , II , Springer (1991) pp. 1387–1396 MR1159323 Zbl 0757.53048
[a46] I.R. Shafarevich, "General reciprocity laws" Mat. Sb. , 26 (1950) pp. 13–146
[a47] Z.I. Szabo, "Hilbert's fourth problem" Adv. Math. , 59 (1986) pp. 185–301
[a48] A. Thue, "Uber die dichteste Suzammenstellung von kongruenten Kreisen in einer Ebene" Skr. Vidensk–Selsk Christ. , 1 (1910) pp. 1–9
[a49] R. Tijdeman, "The Gel'fond–Baker method" F.E. Browder (ed.) , Mathematical developments arising from Hilbert's problems , Amer. Math. Soc. (1976) pp. 241–268 Zbl 0341.10026 Zbl 0335.10022
[a50] V.G. Turaev, "Quantum invariants of knots and 3-manifolds" , W. de Gruyter (1994) pp. Chap. II MR1292673 Zbl 0812.57003
[a51] A.S. Wightman, "Hilbert's sixth problem" F.E. Browder (ed.) , Mathematical developments arising from Hilbert's problems , Amer. Math. Soc. (1976) pp. 147–240
[a52] E. Witten, "Topological quantum field theory" Comm. Math. Phys. , 117 (1988) pp. 353–386 MR0953828 Zbl 0656.53078
How to Cite This Entry:
Hilbert problems. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hilbert_problems&oldid=18549
This article was adapted from an original article by M. Hazewinkel (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article