Namespaces
Variants
Actions

Difference between revisions of "Simple set"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (links)
m (gather refs)
 
(2 intermediate revisions by one other user not shown)
Line 1: Line 1:
A recursively-enumerable set of natural numbers (cf. [[Enumerable set]]) whose complement is an [[immune set]]. Simple sets are intermediate in the sense of so-called $m$-reducibility (cf. [[Recursive set theory]]) between [[solvable set]]s and [[creative set]]s. The latter are the largest among the enumerable sets in the sense of $m$-reducibility. Let $P$ be an arbitrary simple set, and let $K$ be an arbitrary creative set of natural numbers (e.g. the set of Gödel numbers of theorems of formal arithmetic); then there does not exist a [[general recursive function]] $f$ reducing $K$ to $P$, i.e. such that
+
A recursively-enumerable set of natural numbers (cf. [[Enumerable set]]) whose complement is an [[immune set]]. Simple sets are intermediate in the sense of [[Many-one reducibility|$m$-reducibility]] (cf. [[Recursive set theory]]) between [[solvable set]]s and [[creative set]]s. The latter are the largest among the enumerable sets in the sense of $m$-reducibility. Let $P$ be an arbitrary simple set, and let $K$ be an arbitrary creative set of natural numbers (e.g. the set of Gödel numbers of theorems of formal arithmetic); then there does not exist a [[general recursive function]] $f$ reducing $K$ to $P$, i.e. such that
 
$$
 
$$
 
x \in K \Leftrightarrow f(x) \in P \ .
 
x \in K \Leftrightarrow f(x) \in P \ .
Line 5: Line 5:
  
 
Reducibility of $P$ to $K$ always takes place, but not one solvable set is reducible to $K$.
 
Reducibility of $P$ to $K$ always takes place, but not one solvable set is reducible to $K$.
 +
 +
====Comments====
 +
A set is ''hypersimple'' if it is recursively enumerable and its complement is a [[hyperimmune set]].
  
 
====References====
 
====References====
Line 11: Line 14:
 
<TR><TD valign="top">[2]</TD> <TD valign="top">  A.I. Mal'tsev,  "Algorithms and recursive functions" , Wolters-Noordhoff  (1970)  (Translated from Russian)</TD></TR>
 
<TR><TD valign="top">[2]</TD> <TD valign="top">  A.I. Mal'tsev,  "Algorithms and recursive functions" , Wolters-Noordhoff  (1970)  (Translated from Russian)</TD></TR>
 
<TR><TD valign="top">[3]</TD> <TD valign="top">  H. Rogers jr.,  "Theory of recursive functions and effective computability" , McGraw-Hill  (1967)  pp. 164–165</TD></TR>
 
<TR><TD valign="top">[3]</TD> <TD valign="top">  H. Rogers jr.,  "Theory of recursive functions and effective computability" , McGraw-Hill  (1967)  pp. 164–165</TD></TR>
 +
<TR><TD valign="top">[a1]</TD> <TD valign="top"> Nies, André. Computability and randomness. Oxford Logic Guides 51. Oxford: Oxford University Press (2009). {{ISBN|978-0-19-923076-1}} {{ZBL|1169.03034}}</TD></TR>
 
</table>
 
</table>
  

Latest revision as of 20:46, 23 November 2023

A recursively-enumerable set of natural numbers (cf. Enumerable set) whose complement is an immune set. Simple sets are intermediate in the sense of $m$-reducibility (cf. Recursive set theory) between solvable sets and creative sets. The latter are the largest among the enumerable sets in the sense of $m$-reducibility. Let $P$ be an arbitrary simple set, and let $K$ be an arbitrary creative set of natural numbers (e.g. the set of Gödel numbers of theorems of formal arithmetic); then there does not exist a general recursive function $f$ reducing $K$ to $P$, i.e. such that $$ x \in K \Leftrightarrow f(x) \in P \ . $$

Reducibility of $P$ to $K$ always takes place, but not one solvable set is reducible to $K$.

Comments

A set is hypersimple if it is recursively enumerable and its complement is a hyperimmune set.

References

[1] V.A. Uspenskii, "Leçons sur les fonctions calculables" , Hermann (1966) (Translated from Russian)
[2] A.I. Mal'tsev, "Algorithms and recursive functions" , Wolters-Noordhoff (1970) (Translated from Russian)
[3] H. Rogers jr., "Theory of recursive functions and effective computability" , McGraw-Hill (1967) pp. 164–165
[a1] Nies, André. Computability and randomness. Oxford Logic Guides 51. Oxford: Oxford University Press (2009). ISBN 978-0-19-923076-1 Zbl 1169.03034
How to Cite This Entry:
Simple set. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Simple_set&oldid=34508
This article was adapted from an original article by S.N. Artemov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article