Namespaces
Variants
Actions

Difference between revisions of "Dickman-function(2)"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
m (AUTOMATIC EDIT (latexlist): Replaced 2 formulas out of 2 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.)
Line 1: Line 1:
<!--
+
<!--This article has been texified automatically. Since there was no Nroff source code for this article,
d1101801.png
+
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
$#A+1 = 16 n = 2
+
was used.
$#C+1 = 16 : ~/encyclopedia/old_files/data/D110/D.1100180 Dickman function
+
If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category.
Automatically converted into TeX, above some diagnostics.
 
Please remove this comment and the {{TEX|auto}} line below,
 
if TeX found to be correct.
 
-->
 
  
 +
Out of 2 formulas, 2 were replaced by TEX code.-->
 +
 +
{{TEX|semi-auto}}{{TEX|done}}
 
{{TEX|auto}}
 
{{TEX|auto}}
 
{{TEX|done}}
 
{{TEX|done}}
Line 18: Line 17:
  
 
$$  
 
$$  
u \rho  ^  \prime  ( u ) = - \rho ( u - 1 )  ( u > 1 ) .
+
u \rho  ^  \prime  ( u ) = - \rho ( u - 1 )  ( u &gt; 1 ) .
 
$$
 
$$
  
Line 25: Line 24:
 
of positive integers not exceeding  $  x $
 
of positive integers not exceeding  $  x $
 
that are free of prime factors greater than  $  y $:  
 
that are free of prime factors greater than  $  y $:  
for any fixed  $  u > 0 $,  
+
for any fixed  $  u &gt; 0 $,  
 
one has  $  \Psi ( x,x ^ { {1 / u } } ) \sim \rho ( u ) x $
 
one has  $  \Psi ( x,x ^ { {1 / u } } ) \sim \rho ( u ) x $
 
as  $  u \rightarrow \infty $[[#References|[a2]]], [[#References|[a4]]].
 
as  $  u \rightarrow \infty $[[#References|[a2]]], [[#References|[a4]]].
Line 45: Line 44:
 
{ \mathop{\rm exp} } \left \{ \gamma - u \xi ( u ) + \int\limits _ { 0 } ^ {  \xi  ( u ) } { {
 
{ \mathop{\rm exp} } \left \{ \gamma - u \xi ( u ) + \int\limits _ { 0 } ^ {  \xi  ( u ) } { {
 
\frac{e  ^ {s} - 1 }{s}
 
\frac{e  ^ {s} - 1 }{s}
  } }  {ds } \right \}  ( u > 1 ) ,
+
  } }  {ds } \right \}  ( u &gt; 1 ) ,
 
$$
 
$$
  
Line 53: Line 52:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  K. Alladi,  "The Turán–Kubilius inequality for integers without large prime factors"  ''J. Reine Angew. Math.'' , '''335'''  (1982)  pp. 180–196</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  N.G. de Bruijn,  "On the number of positive integers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110180/d11018017.png" /> and free of prime factors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/d/d110/d110180/d11018018.png" />"  ''Nederl. Akad. Wetensch. Proc. Ser. A'' , '''54'''  (1951)  pp. 50–60</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  N.G. de Bruijn,  "The asymptotic behaviour of a function occurring in the theory of primes"  ''J. Indian Math. Soc. (N.S.)'' , '''15'''  (1951)  pp. 25–32</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  A. Hildebrand,  G. Tenenbaum,  "Integers without large prime factors"  ''J. de Théorie des Nombres de Bordeaux'' , '''5'''  (1993)  pp. 411–484</TD></TR></table>
+
<table><tr><td valign="top">[a1]</td> <td valign="top">  K. Alladi,  "The Turán–Kubilius inequality for integers without large prime factors"  ''J. Reine Angew. Math.'' , '''335'''  (1982)  pp. 180–196</td></tr><tr><td valign="top">[a2]</td> <td valign="top">  N.G. de Bruijn,  "On the number of positive integers $\leq x$ and free of prime factors $&gt; y$"  ''Nederl. Akad. Wetensch. Proc. Ser. A'' , '''54'''  (1951)  pp. 50–60</td></tr><tr><td valign="top">[a3]</td> <td valign="top">  N.G. de Bruijn,  "The asymptotic behaviour of a function occurring in the theory of primes"  ''J. Indian Math. Soc. (N.S.)'' , '''15'''  (1951)  pp. 25–32</td></tr><tr><td valign="top">[a4]</td> <td valign="top">  A. Hildebrand,  G. Tenenbaum,  "Integers without large prime factors"  ''J. de Théorie des Nombres de Bordeaux'' , '''5'''  (1993)  pp. 411–484</td></tr></table>

Revision as of 16:56, 1 July 2020


The unique continuous solution of the system

$$ \rho ( u ) = 1 ( 0 \leq u \leq 1 ) , $$

$$ u \rho ^ \prime ( u ) = - \rho ( u - 1 ) ( u > 1 ) . $$

The Dickman function $ \rho ( u ) $ occurs in the problem of estimating the number $ \Psi ( x,y ) $ of positive integers not exceeding $ x $ that are free of prime factors greater than $ y $: for any fixed $ u > 0 $, one has $ \Psi ( x,x ^ { {1 / u } } ) \sim \rho ( u ) x $ as $ u \rightarrow \infty $[a2], [a4].

The function $ \rho ( u ) $ is positive, non-increasing and tends to zero at a rate faster than exponential as $ u \rightarrow \infty $. A precise asymptotic estimate is given by the de Bruijn–Alladi formula [a1], [a3]:

$$ \rho ( u ) = ( 1 + O ( { \frac{1}{u} } ) ) \sqrt { { \frac{\xi ^ \prime ( u ) }{2 \pi } } } \times $$

$$ \times { \mathop{\rm exp} } \left \{ \gamma - u \xi ( u ) + \int\limits _ { 0 } ^ { \xi ( u ) } { { \frac{e ^ {s} - 1 }{s} } } {ds } \right \} ( u > 1 ) , $$

where $ \gamma $ is the Euler constant and $ \xi ( u ) $ is the unique positive solution of the equation $ e ^ {\xi ( u ) } = 1 + u \xi ( u ) $.

References

[a1] K. Alladi, "The Turán–Kubilius inequality for integers without large prime factors" J. Reine Angew. Math. , 335 (1982) pp. 180–196
[a2] N.G. de Bruijn, "On the number of positive integers $\leq x$ and free of prime factors $> y$" Nederl. Akad. Wetensch. Proc. Ser. A , 54 (1951) pp. 50–60
[a3] N.G. de Bruijn, "The asymptotic behaviour of a function occurring in the theory of primes" J. Indian Math. Soc. (N.S.) , 15 (1951) pp. 25–32
[a4] A. Hildebrand, G. Tenenbaum, "Integers without large prime factors" J. de Théorie des Nombres de Bordeaux , 5 (1993) pp. 411–484
How to Cite This Entry:
Dickman-function(2). Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Dickman-function(2)&oldid=46649
This article was adapted from an original article by A. Hildebrand (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article