Difference between revisions of "Channel with a finite memory"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | c0214401.png | ||
+ | $#A+1 = 22 n = 0 | ||
+ | $#C+1 = 22 : ~/encyclopedia/old_files/data/C021/C.0201440 Channel with a finite memory | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A [[Communication channel|communication channel]] for which the statistical properties of the output signal at a time $ t $ | |
+ | are determined by the input signals transmitted at the times $ t ^ \prime $, | ||
+ | $ t - m \leq t ^ \prime \leq t $( | ||
+ | and therefore do not depend on the signals transmitted prior to the time $ t - m $); | ||
+ | the number $ m $ | ||
+ | is called the size (or length) of the memory of the channel. | ||
− | + | More precisely, a discrete-time communication channel where the input and output signals are given, respectively, by random sequences $ \eta = ( . . . , \eta _ {-} 1 , \eta _ {0} , \eta _ {1} , . . . ) $ | |
+ | and $ \widetilde \eta = ( \widetilde \eta _ {-} 1 , \widetilde \eta _ {0} , \widetilde \eta _ {1} , . . . ) $ | ||
+ | with values in the spaces $ ( Y, S _ {Y} ) $ | ||
+ | and $ ( \widetilde{Y} , S _ {\widetilde{Y} } ) $ | ||
+ | is called a channel with a finite memory if a compatible set of conditional distributions | ||
− | + | $$ | |
+ | {\mathsf P} | ||
+ | \{ \widetilde \eta {} _ {k} ^ {n} \in \widetilde{A} \mid \ | ||
+ | \eta _ {- \infty } ^ {n} \} , | ||
+ | $$ | ||
− | + | by means of which such a channel can be defined, satisfies for any $ i, j, k, n $, | |
+ | and $ \widetilde{A} , \widetilde{B} $ | ||
+ | the conditions | ||
− | + | $$ | |
+ | {\mathsf P} | ||
+ | \{ \widetilde \eta {} _ {k} ^ {n} \in \widetilde{A} \mid \ | ||
+ | \eta _ {- \infty } ^ {n} \} = {\mathsf P} | ||
+ | \{ \widetilde \eta {} _ {k} ^ {n} \in \widetilde{A} \mid \ | ||
+ | \eta _ {k - m } ^ {n} \} , | ||
+ | $$ | ||
− | + | $$ | |
+ | {\mathsf P} \{ \widetilde \eta {} _ {i} ^ {j} \in \widetilde{B} , | ||
+ | \widetilde \eta {} _ {k} ^ {n} \in \widetilde{A} \mid \eta _ {- \infty } ^ {n} \} = | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | = \ | ||
+ | {\mathsf P} \{ \widetilde \eta {} _ {i} ^ {j} \in \widetilde{B} | ||
+ | \mid \eta _ {- \infty } ^ {n} \} \cdot {\mathsf P} | ||
+ | \{ \widetilde \eta {} _ {k} ^ {n} \in \widetilde{A} \mid \eta _ {- \infty } ^ {n} \} . | ||
+ | $$ | ||
+ | |||
+ | Here $ \widetilde \eta _ {k} ^ {n} = ( \widetilde \eta _ {k} \dots \widetilde \eta _ {n} ) $, | ||
+ | $ \eta _ {- \infty } ^ {n} = ( . . . , \eta _ {n - 1 } , \eta _ {n} ) $, | ||
+ | and $ \widetilde{A} $( | ||
+ | respectively, $ \widetilde{B} $) | ||
+ | is a set in the direct product of $ n - k + 1 $( | ||
+ | respectively, $ j - i + 1 $) | ||
+ | copies of $ ( \widetilde{Y} , S _ {\widetilde{Y} } ) $. | ||
+ | A continuous-time channel with a finite memory is defined similarly. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.Ya. Khinchin, "On the basic theorems of information theory" ''Uspekhi Mat. Nauk'' , '''11''' : 1 (1956) pp. 17–75 (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A.A. Feinstein, "Foundations of information theory" , McGraw-Hill (1968)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> J. Wolfowitz, "Coding theorems of information theory" , Springer (1964)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.Ya. Khinchin, "On the basic theorems of information theory" ''Uspekhi Mat. Nauk'' , '''11''' : 1 (1956) pp. 17–75 (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A.A. Feinstein, "Foundations of information theory" , McGraw-Hill (1968)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> J. Wolfowitz, "Coding theorems of information theory" , Springer (1964)</TD></TR></table> |
Latest revision as of 16:43, 4 June 2020
A communication channel for which the statistical properties of the output signal at a time $ t $
are determined by the input signals transmitted at the times $ t ^ \prime $,
$ t - m \leq t ^ \prime \leq t $(
and therefore do not depend on the signals transmitted prior to the time $ t - m $);
the number $ m $
is called the size (or length) of the memory of the channel.
More precisely, a discrete-time communication channel where the input and output signals are given, respectively, by random sequences $ \eta = ( . . . , \eta _ {-} 1 , \eta _ {0} , \eta _ {1} , . . . ) $ and $ \widetilde \eta = ( \widetilde \eta _ {-} 1 , \widetilde \eta _ {0} , \widetilde \eta _ {1} , . . . ) $ with values in the spaces $ ( Y, S _ {Y} ) $ and $ ( \widetilde{Y} , S _ {\widetilde{Y} } ) $ is called a channel with a finite memory if a compatible set of conditional distributions
$$ {\mathsf P} \{ \widetilde \eta {} _ {k} ^ {n} \in \widetilde{A} \mid \ \eta _ {- \infty } ^ {n} \} , $$
by means of which such a channel can be defined, satisfies for any $ i, j, k, n $, and $ \widetilde{A} , \widetilde{B} $ the conditions
$$ {\mathsf P} \{ \widetilde \eta {} _ {k} ^ {n} \in \widetilde{A} \mid \ \eta _ {- \infty } ^ {n} \} = {\mathsf P} \{ \widetilde \eta {} _ {k} ^ {n} \in \widetilde{A} \mid \ \eta _ {k - m } ^ {n} \} , $$
$$ {\mathsf P} \{ \widetilde \eta {} _ {i} ^ {j} \in \widetilde{B} , \widetilde \eta {} _ {k} ^ {n} \in \widetilde{A} \mid \eta _ {- \infty } ^ {n} \} = $$
$$ = \ {\mathsf P} \{ \widetilde \eta {} _ {i} ^ {j} \in \widetilde{B} \mid \eta _ {- \infty } ^ {n} \} \cdot {\mathsf P} \{ \widetilde \eta {} _ {k} ^ {n} \in \widetilde{A} \mid \eta _ {- \infty } ^ {n} \} . $$
Here $ \widetilde \eta _ {k} ^ {n} = ( \widetilde \eta _ {k} \dots \widetilde \eta _ {n} ) $, $ \eta _ {- \infty } ^ {n} = ( . . . , \eta _ {n - 1 } , \eta _ {n} ) $, and $ \widetilde{A} $( respectively, $ \widetilde{B} $) is a set in the direct product of $ n - k + 1 $( respectively, $ j - i + 1 $) copies of $ ( \widetilde{Y} , S _ {\widetilde{Y} } ) $. A continuous-time channel with a finite memory is defined similarly.
References
[1] | A.Ya. Khinchin, "On the basic theorems of information theory" Uspekhi Mat. Nauk , 11 : 1 (1956) pp. 17–75 (In Russian) |
[2] | A.A. Feinstein, "Foundations of information theory" , McGraw-Hill (1968) |
[3] | J. Wolfowitz, "Coding theorems of information theory" , Springer (1964) |
Channel with a finite memory. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Channel_with_a_finite_memory&oldid=11735