|
|
Line 1: |
Line 1: |
− | A function of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059230/l0592301.png" />. The main property of a linear function is: The increment of the function is proportional to the increment of the argument. Graphically a linear function is represented by a straight line. | + | A function of the form $y=kx+b$. The main property of a linear function is: |
| + | The increment of the function is proportional to the increment of the |
| + | argument. Graphically a linear function is represented by a straight |
| + | line. |
| | | |
− | A linear function in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059230/l0592302.png" /> variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059230/l0592303.png" /> is a function of the form | + | A linear function in $n$ variables $x_1,\dots,x_n$ is a function of the form |
| + | $$f(x) = a_1x_1+\cdots + a_nx_n +a,$$ |
| + | where $a_1,\dots,a_n$ and $a$ are certain fixed numbers. The domain of definition |
| + | of a linear function is the whole $n$-dimensional space of the |
| + | variables $x_1,\dots,x_n$, real or complex. If $a=0$, the linear function is called |
| + | a homogeneous, or linear, form. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059230/l0592304.png" /></td> </tr></table>
| + | If all variables $x_1,\dots,x_n$ and coefficients $a_1,\dots,a_n, a$ are real (complex) numbers, |
| + | then the graph of the linear function in the $n+1$-dimensional (complex) |
| + | space of the variables $x_1,\dots,x_n,y$ is the (complex) $n$-dimensional hyperplane |
| + | $y = a_1x_1+\cdots + a_nx_n +a,$, in particular, for $n=1$ it is a straight line in the plane |
| + | (respectively, a complex plane in two-dimensional complex space). |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059230/l0592305.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059230/l0592306.png" /> are certain fixed numbers. The domain of definition of a linear function is the whole <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059230/l0592307.png" />-dimensional space of the variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059230/l0592308.png" />, real or complex. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059230/l0592309.png" />, the linear function is called a homogeneous, or linear, form.
| + | The term "linear function" , or, more precisely, homogeneous linear |
− | | + | function, is often used for a linear mapping of a vector space $X$ |
− | If all variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059230/l05923010.png" /> and coefficients <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059230/l05923011.png" /> are real (complex) numbers, then the graph of the linear function in the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059230/l05923012.png" />-dimensional (complex) space of the variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059230/l05923013.png" /> is the (complex) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059230/l05923014.png" />-dimensional hyperplane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059230/l05923015.png" />, in particular, for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059230/l05923016.png" /> it is a straight line in the plane (respectively, a complex plane in two-dimensional complex space).
| + | over a field $K$ into this field, that is, for a mapping $f:X\to K$ such that |
− | | + | for any elements $x',x''\in X$ and any $\alpha',\alpha''\in K$, |
− | The term "linear function" , or, more precisely, homogeneous linear function, is often used for a linear mapping of a vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059230/l05923017.png" /> over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059230/l05923018.png" /> into this field, that is, for a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059230/l05923019.png" /> such that for any elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059230/l05923020.png" /> and any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059230/l05923021.png" />, | + | $$f(\alpha'x'+\alpha''x'') = \alpha'f(x') + \alpha''f(x''),$$ |
− | | + | and in this case instead of |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l059/l059230/l05923022.png" /></td> </tr></table>
| + | the term "linear function" one also uses the terms linear functional |
− | | + | and linear form. |
− | and in this case instead of the term "linear function" one also uses the terms linear functional and linear form. | |
A function of the form $y=kx+b$. The main property of a linear function is:
The increment of the function is proportional to the increment of the
argument. Graphically a linear function is represented by a straight
line.
A linear function in $n$ variables $x_1,\dots,x_n$ is a function of the form
$$f(x) = a_1x_1+\cdots + a_nx_n +a,$$
where $a_1,\dots,a_n$ and $a$ are certain fixed numbers. The domain of definition
of a linear function is the whole $n$-dimensional space of the
variables $x_1,\dots,x_n$, real or complex. If $a=0$, the linear function is called
a homogeneous, or linear, form.
If all variables $x_1,\dots,x_n$ and coefficients $a_1,\dots,a_n, a$ are real (complex) numbers,
then the graph of the linear function in the $n+1$-dimensional (complex)
space of the variables $x_1,\dots,x_n,y$ is the (complex) $n$-dimensional hyperplane
$y = a_1x_1+\cdots + a_nx_n +a,$, in particular, for $n=1$ it is a straight line in the plane
(respectively, a complex plane in two-dimensional complex space).
The term "linear function" , or, more precisely, homogeneous linear
function, is often used for a linear mapping of a vector space $X$
over a field $K$ into this field, that is, for a mapping $f:X\to K$ such that
for any elements $x',x''\in X$ and any $\alpha',\alpha''\in K$,
$$f(\alpha'x'+\alpha''x'') = \alpha'f(x') + \alpha''f(x''),$$
and in this case instead of
the term "linear function" one also uses the terms linear functional
and linear form.