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1 Introduction

The methods described in this article mostly rely on the possibility of pro-
ducing (with a computer) a supposedly endless flow of random variables
(usually iid) for well-known distributions. Such a simulation is, in turn,
based on the production of uniform random variables. There are many ways
in which uniform pseudorandom numbers can be generated. For example
there is the Kiss algorithm of Marsaglia and Zaman (1993); details on other
random number generators can be found in the books of Rubinstein (1981),
Ripley (1987), Fishman (1996), and Knuth (1998).

2 Generating Nonuniform Random Variables

The generation of random variables that are uniform on the interval [0, 1],
the Uniform [0, 1] distribution, provides the basic probabilistic representa-
tion of randomness. The book by Devroye (1986) is a detailed discussion of
methods for generating nonuniform variates, and the subject is one of the
many covered in Knuth (1998). Formally, we can generate random variables
with any distribution by means of the following.
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2.1 Probability Integral Transform

For a function F on ℜ, the generalized inverse of F is F−(u) = inf {x :
F (x) ≥ u} . If F is a cumulative distribution function (cdf), F−(U) has the
cdf F and to generate X ∼ F ,

1. Generate U according to Uniform[0, 1]

2. Make the transformation x = F−(u).

2.2 Generating Discrete Variables

For discrete distributions, if the random variable X satisfies

P (X = k) = pk, k = 0, 1, 2, . . .

then if U ∼ uniform[0, 1], X can be generated by

k = 0 : U ≤ p0 ⇒ X = 0,

k = 1, 2, . . . , :

k−1
∑

j=0

pj ≤ U <

k
∑

j=0

pj ⇒ X = k.

2.3 Mixture Distributions

In a mixture representation a density f has the form

f(x) =

∫

Y
f(x|y)g(y) dy (continuous)

f(x) =
∑

i∈Y
pi fi(x) (discrete).

We then can simulate X as

1. Y ∼ g(y), X ∼ f(x|Y = y), or

2. P (Y = i) = pi, X ∼ fi(x)

3 Accept-Reject Methods

Another class of methods only requires the form of the density f of interest -
called the target density . We simulate from a density g, called the candidate
density .

2



Given a target density f , we need a candidate density g and a constant
M such that

f(x) ≤ Mg(x)

on the support of f .

3.1 Accept-Reject Algorithm:

To produce a variable X distributed according to f :

1. Generate Y ∼ g, U ∼ Uniform[0, 1] ;

2. Accept X = Y if U ≤ f(Y )/Mg(Y ) ;

3. Otherwise, return to 1.

Notes:

(a). The densities f and g need be known only up to a multiplicative factor.

(b). The probability of acceptance is 1/M , when evaluated for the normal-
ized densities.

3.2 Envelope Accept-Reject Algorithm:

If the target density f is difficult to evaluate, the Envelope Accept-Reject
Algorithm (called the squeeze principle by Marsaglia 1977) may be appro-
priate.

If there exist a density gm, a function gl and a constant M such that

gl(x) ≤ f(x) ≤ Mgm(x) ,

then the algorithm

1. Generate X ∼ gm(x), U ∼ Uniform[0, 1];

2. Accept X if U ≤ gl(X)/Mgm(X);

3. Otherwise, accept X if U ≤ f(X)/Mgm(X)

4. Otherwise, return to 1.

produces X ∼ f . The number of evaluations of f is potentially decreased by
a factor 1

M . If f is log-concave, Gilks and Wild (1992) construct a generic
accept-reject algorithm that can be quite efficient.
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4 Markov Chain Methods

Every simulation method discussed thus far has produced independent ran-
dom variables whose distribution is exactly the target distribution. In con-
trast, Markov chain methods produce a sequence of dependent random vari-
ables whose distribution converges to the target. Their advantage is their
applicability in complex situations.

Recall that a sequenceX0,X1, . . . ,Xn, . . . of random variables is aMarkov
chain if, for any t, the conditional distribution of Xt given xt−1, xt−2, . . . , x0
is the same as the distribution of Xt given xt−1; that is,

P (Xk+1 ∈ A|x0, x1, x2, . . . , xk) = P (Xk+1 ∈ A|xk).

4.1 Metropolis - Hastings Algorithm

The Metropolis-Hastings (M-H) algorithm (Metropolis et al. 1953, Hastings
1970) associated with the target density f and the candidate density q(y|x)
produces a Markov chain (X(t)) through

Metropolis -Hastings Given x(t),

1. Generate Yt ∼ q(y|x(t)).

2. Take

X(t+1) =

{

Yt with prob. ρ(x(t), Yt)

x(t) with prob. 1− ρ(x(t), Yt)

where

ρ(x, y) = min

{

f(y)

f(x)

q(x|y)
q(y|x) , 1

}

,

3. Then X(t) converges in distribution to X ∼ f .

Notes:

(a). For q(·|x) = q(·) we have the independent M-H algorithm, and for
q(x|y) = q(y|x) we have a symmetric M-H algorithm, where ρ does
not depend on q. Also, q(x|y) = q(y−x), symmetric around zero, is a
random walk M-H algorithm.

(b). Like the Accept-Reject method, the Metropolis - Hastings algorithm
only requires knowing f and q up to normalizing constants.
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4.2 The Gibbs Sampler

For p > 1, write the random variableX ∈ X asX = (X1, . . . ,Xp) ∼ f , where
the Xi’s are either uni- or multidimensional, with conditional distributions

Xi|x1, x2, . . . , xi−1, xi+1, . . . , xp ∼ fi(xi|x1, x2, . . . , xi−1, xi+1, . . . , xp)

for i = 1, 2, . . . , p. The associated Gibbs sampler is given by the following
transition from X(t) to X(t+1):

The Gibbs sampler Given x(t) = (x
(t)
1 , . . . , x

(t)
p ), generate

1. X
(t+1)
1 ∼ f1(x1|x(t)2 , . . . , x

(t)
p );

2. X
(t+1)
2 ∼ f2(x2|x(t+1)

1 , x
(t)
3 , . . . , x

(t)
p ),

...

p. X
(t+1)
p ∼ fp(xp|x(t+1)

1 , . . . , x
(t+1)
p−1 ),

then X(t) converges in distribution to X ∼ f .

Notes:

(a). The densities f1, . . . , fp are called the full univariate conditionals.

(b). Even in a high dimensional problem, all of the simulations can be
univariate.

(c). The Gibbs sampler is, formally, a special case of the M-H algorithm
(see Robert and Casella 2004, Section 10.2.2) but with acceptance rate
equal to 1.

4.3 The Slice Sampler

A particular version of the Gibbs sampler, called the slice sampler (Besag
and Green 1993, Damien et al. 1999), can sometimes be useful. Write
f(x) =

∏k
i=1 fi(x) where the fi’s are positive functions, not necessarily

densities
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Slice sampler Simulate

1. ω
(t+1)
1 ∼ Uniform[0,f1(x(t))];

. . .

k. ω
(t+1)
k ∼ Uniform[0,fk(x(t))];

k+1. x(t+1) ∼ UniformA(t+1) , with

A(t+1) = {y; fi(y) ≥ ω
(t+1)
i , i = 1, . . . , k}.

then X(t) converges in distribution to X ∼ f .

5 Application

In this section we give some guidelines for simulating different distributions.
See Robert and Casella (2004, 2010) for more detailed explanations, and
Devroye (1986) for more algorithms. In what follows, U is Uniform(0, 1)
unless otherwise specified.

Arcsine f(x) = 1

π
√

x(1−x)
, 0 ≤ x ≤ 1, sin2 (πU/2) ∼ f .

Beta(r, s) f(x) = Γ(r+s)
Γ(r)Γ(s)x

r−1(1−x)s−1, 0 ≤ x ≤ 1, r > 0, s > 0, X1
X1+X2

∼
f , where X1 ∼ Gamma (r, 1) and X2 ∼ Gamma (s, 1), independent.

Cauchy(µ, σ) f(x|µ, σ) = 1
σπ

1

1+ (x−µ)2

σ2

, −∞ < x < ∞, σ tan
(

π
2 (2U − 1)

)

+

µ ∼ Cauchy (µ, σ).
If U ∼ uniform[−π/2, π/2], then tan(U) ∼ Cauchy(0, 1). Also, X/Y ∼

Cauchy (0, 1), where X,Y,∼ N(0, 1), independent.

Chi squared(p) f(x|p) = 1
Γ(p/2)2p/2

x(p/2)−1e−x/2, 0 ≤ x < ∞, p = 1, 2, . . . .

−2

ν
∑

j=1

log(Uj) ∼ χ2
2ν , or χ2

2ν + Z2 ∼ χ2
2ν+1,

where Z is an independent Normal(0, 1) random variable.
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Double exponential(µ, σ) f(x|µ, σ) = 1
2β e

−|x−µ|/β, −∞ < x < ∞,
−∞ < µ < ∞, β > 0. If Y ∼ Exponential(β), then attaching a ran-
dom sign (+ if U > .5, − otherwise) gives X ∼ Double exponential(0, 1),
and σX + µ ∼ Double exponential(µ, σ). This is also known as the Laplace
distribution.

Exponential(β) f(x|β) = 1
β e

−x/β, 0 ≤ x < ∞, β > 0, −β logU ∼
Exponential(β).

Extreme Value(α, γ) f(x|α, γ) = e−
x−α
γ

−e
−

x−α
γ

, α ≤ x < ∞, γ > 0.
If X ∼ Exponential(1), α − γ log(X) ∼ Extreme Value(α, γ). This is also
known as the Gumbel distribution.

F Distribution f(x|ν1, ν2) =
Γ
(

ν1+ν2
2

)

Γ( ν1
2 )Γ(

ν2
2 )

(

ν1
ν2

)ν1/2
x(ν1−2)/2

(

1+
(

ν1
ν2

)

x
)(ν1+ν2)/2

, 0 ≤

x < ∞. If X1 ∼ χ2
ν1 and X2 ∼ χ2

ν2 , independent,
X1/ν1
X2/ν2

∼ f(x|ν1, ν2).

Gamma(α, β) f(x|α, β) = 1
Γ(α)βαx

α−1e−x/β, 0 ≤ x < ∞, α, β > 0. Then

−β
∑a

j=1 log(Uj) ∼ Gamma(a, β), a an integer.
If α is not an integer, indirect methods can be used. For example, to gen-

erate a Gamma(α, β) use Algorithm 3.1 or 4.1 with candidate distribution
Gamma(a, b), with a = [α] and b = βα/a, where [α] is the greatest integer
less than α. For the Accept-Reject algorithm the bound on the normalized
f/g is M = Γ(a)

Γ(α)
αα

aa e
−(α−a). There are many other efficient algorithms.

Note: If X ∼ Gamma(α, 1) then βX ∼ Gamma(α, β). Some special cases
are Exponential (1) = gamma(1, 1), and Chi squared (p)= gamma (p/2, 2).
Also, 1/X has the inverted (or inverse) gamma distribution.

Logistic(µ, β) f(x|µ, β) = 1
β

e−(x−µ)/β

[1+e−(x−µ)/β]
2 , −∞ < x < ∞, −∞ < µ < ∞,

β > 0.

−β log

(

1− U

U

)

+ µ ∼ Logistic(µ, β)
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Lognormal(µ, σ2) f(x|µ, σ2) = 1√
2πσ

e−(log x−µ)2/(2σ2)

x , 0 ≤ x < ∞, −∞ <

µ < ∞. If X ∼ Normal(µ, σ2).

eX ∼ Lognormal(µ, σ2)

Noncentral chi squared (λ, p), λ ≥ 0 fp(x|λ) =
∑∞

k=0
xp/2+k−1e−x/2

Γ(p/2+k)2p/2+k
λke−λ

k! ,

0 < x < ∞.

K ∼ Poisson (λ/2), X ∼ χ2
p+2K ⇒ X ∼ fp(x|λ)

where p is the degrees of freedom and λ is the noncentrality parameter. A
more efficient algorithm is

Z ∼ χ2
p−1 and Y ∼ N (

√
λ, 1) ⇒ Z + Y 2 ∼ fp(x|λ).

Normal(µ, σ2) f(x|µ, σ2) = 1√
2πσ

e−(x−µ)2/(2σ2), −∞ < x < ∞, −∞ <

µ < ∞, σ > 0. The Box-Muller algorithm simulates two normals from two
uniforms:

X1 =
√

−2 log(U1) cos(2πU2) and X2 =
√

−2 log(U1) sin(2πU2) ,

then X1,X2 ∼ Normal(µ, σ2).
There are many other ways to generate normal random variables.

(a). Accept Reject using Cauchy When f(x) = (1/
√
2π) exp(−x2/2) and

g(x) = (1/π)1/(1 + x2), densities of the normal and Cauchy distribu-
tions, respectively, then f(x)/g(x) ≤

√

2π/e = 1.520.

(b). Accept Reject using double exponential When f(x) = 1√
2π

exp(−x2/2)

and g(x) = (1/2) exp(−|x|), f(x)/g(x) ≤
√

2e/π = 1.315.

(c). Slice Sampler

W |x ∼ uniform [0, exp(−x2/2)] , X|w ∼ uniform [−
√

−2 log(w),
√

−2 log(w)] ,

yields X ∼ N(0, 1).

Pareto(α, β), α > 0, β > 0 f(x|α, β) = βαβ

xβ+1 , α < x < ∞,

α

(1− U)1/β
∼ Pareto (α, β)
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Student’s tν f(x|ν) =
Γ( ν+1

2 )
Γ
(

ν

2

)

1√
νπ

1
(

1+
(

x2

ν

))(ν+1)/2 , −∞ < x < ∞, ν =

1, 2, . . . .
Y ∼ χ2

ν and X|y ∼ N (0, ν/y) ⇒ X ∼ tν .

Also, if X1 ∼ N(0, 1) and X2 ∼ χ2
ν , then X1/

√

X2/ν ∼ tν .

Uniform(a, b) f(x|a, b) = 1
b−a , a ≤ x ≤ b,

(b− a)U + a ∼ Uniform(a, b).

Weibull(γ, β) f(x|γ, β) = γ
βx

γ−1e−xγ/β, 0 ≤ x < ∞, γ > 0, β > 0.

X ∼ Exponential(β) ⇒ X1/γ ∼ Weibull(γ, β).
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