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1 Set partitions

For integer n ≥ 1, a partition B of the finite set [n] = {1, . . . , n} is
(i) a collection B = {b1, . . .} of disjoint non-empty subsets, called blocks,

whose union is [n];
(ii) an equivalence relation on [n], i.e. a symmetric Boolean function B : [n]×

[n] → {0, 1} that is also reflexive and transitive;
(iii) a block factor or symmetric binary matrix of order n such that Bij = 1

if i, j belong to the same block.
These equivalent representations are not distinguished in the notation, so

B is a set of subsets, a Boolean function, a subset of [n] × [n], or a symmetric
binary matrix, as the context demands. In practice, a partition is frequently
written in an abbreviated form, such asB = 2|13 for a partition of [3] or u2|u1, u3

for a partition of three objects {u1, u2, u3}.. In this notation, the partitions of
[2] are 12 and 1|2, and the five partitions of [3] are

123, 12|3, 13|2, 23|1, 1|2|3.

The blocks are unordered and unlabelled, so there is no concept of a first block
or a last block, and 2|13 is the same partition as 13|2 and 2|31.

A partition B is a sub-partition of B∗ if each block of B is a subset of some
block of B∗ or, equivalently, if Bij = 1 implies B∗

ij = 1. This relationship is
a partial order denoted by B ≤ B∗, which can be interpreted as B ⊂ B∗ if
each partition is regarded as a subset of [n]2. The partition lattice En is the
set of partitions of [n] with this partial order. To each pair of partitions B,B′

there corresponds a greatest lower bound B ∧ B′, which is the set intersection
or Hadamard component-wise matrix product. The least upper bound B ∨ B′

is the least element of En that is greater than or equal to both, the transitive
completion of B∪B′. The least element 0n ∈ En is the partition with n singleton
blocks, and the greatest element is the single-block partition denoted by 1n. As
matrices, 0n is the identity, whereas 1n = [n]2 is the matrix whose components
are all one.

A permutation σ : [n] → [n] induces an action B 7→ Bσ by composition
such that the transformed partition is Bσ(i, j) = B(σ(i), σ(j)) in the form of
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an equivalence relation. In matrix notation, Bσ = σBσ−1, so the action by
conjugation maintains symmetry by permuting both the rows and columns of
B in the same way. The block sizes are preserved and are maximally invariant
under conjugation. In this way, the 15 partitions of [4] may be grouped into five
orbits or equivalence classes as follows:

1234, 123|4 [4], 12|34 [3], 12|3|4 [6], 1|2|3|4.

Thus, for example, 12|34 is the representative element for one orbit, which also
includes 13|24 and 14|23.

The symbol # applied to a set denotes the number of its elements, so #B
is the number of blocks, and #b is the size of block b ∈ B. As a matrix,
B is positive semi-definite of rank #B. A partition distribution is defined on
the finite set En, and the first few values of #En are 1, 2, 5, 15, 52, called
Bell numbers. More generally, #En is the nth moment of the unit Poisson
distribution whose exponential generating function is

exp(et − 1) = 1 +

∞
∑

n=1

tn #En/n!.

In the discussion and manipulation of explicit probability models on En, it is
helpful to use the ascending and descending factorial symbols

α↑r = α(α+ 1) · · · (α+ r − 1) = Γ(r + α)/Γ(α)

k↓r = k(k − 1) · · · (k − r + 1)

for integer r ≥ 0. Note that k↓r = 0 for positive integers r > k. By convention
α↑0 = 1. It is not a coincidence that α↑r is the ordinary generating function for
the Stirling numbers of the first kind Sn,r, the number of permutations [n] → [n]
having exactly r cycles.

2 Dirichlet partition model

The term partition model refers to a probability distribution, or family of prob-
ability distributions, on the set En of partitions of [n]. In some cases, the
probability is concentrated on the the subset Ek

n ⊂ En of partitions having k
or fewer blocks. A distribution on En such that pn(B) = pn(σBσ−1) for every
permutation σ : [n] → [n] is said to be finitely exchangeable. Equivalently, pn is
exchangeable if pn(B) depends only on the block sizes of B.

Historically, the most important examples are Dirichlet-multinomial parti-
tions generated for fixed k in three steps as follows.

(i) First generate the random probability vector π = (π1, . . . , πk) from the
Dirichlet distribution with parameter (θ1, . . . , θk).

(ii) Given π, the sequence Y1, . . . , Yn, . . . is independent and identically dis-
tributed, each component taking values in {1, . . . , k} with probability π. Each
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sequence (y1, . . . , yn) in which the value r occurs nr ≥ 0 times has probability

pn(y) = E(πn1

1 · · ·πnk

k ) =
Γ(θ.)

∏k
j=1 θ

↑nj

j

Γ(n+ θ.)
,

where θ. =
∑

θj .
(iii) Now forget the labels 1, . . . , k and consider only the partition B(Y ) gen-

erated by the sequence Y , i.e. Bij(Y ) = 1 if Yi = Yj . Since Y is an exchangeable
sequence, the partition distribution is also exchangeable, but an explicit simple
formula is available only for the uniform case θj = λ/k, which is now assumed.
The number of sequences generating the same partition B ∈ En is k↓#B, and
these have equal probability in the uniform case. Consequently, the induced
partition has probability

pnk(B, λ) = k↓#B Γ(λ)
∏

b∈B(λ/k)
↑#b

Γ(n+ λ)
, (1)

called the uniform Dirichlet-multinomial partition distribution. The factor k↓#B

ensures that partitions having more than k blocks have zero probability.
In the limit as k → ∞, the uniform Dirichlet-multinomial partition becomes

pn(B, λ) =
λ#B

∏

b∈B Γ(#b)

λ↑n
. (2)

This is the celebrated Ewens distribution, or Ewens sampling formula, which
arises in population genetics as the partition generated by allele type in a popu-
lation evolving according to the Fisher-Wright model by random mutation with
no selective advantage of allele types (Ewens, 1972). The preceding derivation,
a version of which can be found in chapter 3 of Kingman (1980), goes back
to Watterson (1974). The Ewens partition is the same as the partition gen-
erated by a sequence drawn according to the Blackwell-McQueen urn scheme
(Blackwell and McQueen, 1973).

Although the derivation makes sense only if k is a positive integer, the distri-
bution (1) is well defined for negative values −λ < k < 0. For a discussion of this
and the connection with GEM distributions and Poisson-Dirichlet distributions,
see Pitman (2006, section 3.2).

3 Partition processes and partition structures

Deletion of element n from the set [n], or deletion of the last row and column
from the matrix representation B ∈ En, determines a map Dn : En → En−1, a
projection from the larger to the smaller lattice. Equivalently, DnB ≡ B[n− 1]
is the restriction of B to the subset [n−1]. These deletion maps preserve partial
order and make the sets {E1, E2, . . .} into a projective system

· · · En+1
Dn+1

−→ En
Dn−→ En−1 · · ·
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A family p = (p1, p2, . . .) in which pn is a probability distribution on En is
said to be mutually consistent, or Kolmogorov-consistent, if each pn−1 is the
marginal distribution obtained from pn under deletion of element n from the
set [n]. In other words, pn−1(A) = pn(D

−1
n A) for A ⊂ En−1. Kolmogorov

consistency guarantees the existence of a random partition B of the natural
numbers whose finite restrictions B[n] are distributed as pn. The partition is
infinitely exchangeable if each pn is finitely exchangeable. Some authors, for
example Kingman (1980), refer to p as a partition structure.

An exchangeable partition process may be generated from an exchangeable
sequence Y1, Y2, . . . by the transformation Bij = 1 if Yi = Yj and zero other-
wise. The Dirichlet-multinomial and the Ewens processes are generated in this
way. Kingman’s (1978) paintbox construction shows that every exchangeable
partition process may be generated from an exchangeable sequence in this man-
ner. Moreover, the list of relative block sizes in decreasing order has a limit,
which may be random. In the case of the Ewens process, the relative size of
the largest block, Xn = maxb∈B #b/n, has a limit Xn → X distributed as beta
with parameter (1, λ), i.e. with density λ(1 − x)λ−1 for 0 < x < 1. Given the
size of the largest block, the relative size of the next largest block as a fraction
of the remaining elements has the same distribution, and so on.

Let B be an infinitely exchangeable partition, B ∼ p, which means that the
restriction B[n] of B to [n] is distributed as pn. Let B∗ be a fixed partition in
En, and suppose that the event B[n] ≤ B∗ occurs. Then B[n] lies in the lattice
interval [0n, B

∗], which means that B[n] = B[b1]|B[b2]| . . . is the concatenation
(union) of partitions of the blocks b ∈ B∗. For each block b ∈ B∗, the restriction
B[b] is distributed as p#b, so it is natural to ask whether, and under what
conditions, the blocks of B∗ are partitioned independently given B[n] ≤ B∗.
Conditional independence implies that

pn(B |B[n] ≤ B∗) =
∏

b∈B∗

p#b(B[b]), (3)

which is a type of non-interference or lack-of-memory property not dissimilar
to that of the exponential distribution on the real line. It is straightforward
to check that the condition is satisfied by (2) but not by (1). Aldous (1996)
shows that conditional independence uniquely characterizes the Ewens family.
Mixtures of Ewens processes do not have this property.

4 Further exchangeable partition models

Although Dirichlet partition processes are the most common in applied work,
it is useful to know that many alternative partition models exist. Although
some of these are easy to simulate, most do not have simple expressions for the
distributions, but there are exceptions of the form

pn(B;λ) =
Γ(B)Qn(B;λ)

λ↑n
, (4)
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for certain polynomials Qn(B;λ) of degree #B in λ. One such polynomial is

Qn(B, λ) =
∑

B≤B′≤1n

λ#B′

/B′,

which depends on B only through the block sizes. The functions Γ(B) =
∏

b∈B Γ(#b) and Bα =
∏

b∈B(#b)α are multiplicative En → R, and 1/B = B−1

is the inverse of the product of block sizes.
For each λ > 0, pn(B;λ) depends on B only through the block sizes, so the

distribution is exchangeable. Moreover, it can be shown that the family is mutu-
ally consistent in the Kolmogorov sense. However, the conditional independence
property (3) is not satisfied.

The expected number of blocks grows slowly with n, approximately λ log(n)
for the Ewens process, and λ log2(n)/ log log(n) for the process shown above.

5 Chinese restaurant process

A partition process is a random partition B ∼ p of a countably infinite set
{u1, u2, . . .}, and the restriction B[n] of B to {u1, . . . , un} is distributed as pn.
The conditional distribution of B[n+1] given B[n] is determined by the proba-
bilities assigned to those events in En+1 that are compatible with B[n], i.e. the
events un+1 7→ b for b ∈ B and b = ∅. For the uniform Dirichlet-multinomial
model (1), these are

pr(un+1 7→ b |B[n] = B) =

{

(#b+ λ/k)/(n+ λ) b ∈ B
λ(1−#B/k)/(n+ λ) b = ∅.

(5)

In the limit as k → ∞, we obtain

pr(un+1 7→ b |B[n] = B) =

{

#b/(n+ λ) b ∈ B
λ/(n+ λ) b = ∅,

(6)

which is the conditional probability for the Ewens process.
To each partition process p there corresponds a sequential description called

the Chinese restaurant process, in which B[n] is the arrangement of the first
n customers at #B tables. The placement of the next customer is determined
by the conditional distribution pn+1(B[n + 1] |B[n]) (Pitman, 1996). For the
Ewens process, the customer chooses a new table with probability λ/(n + λ)
or one of the occupied tables with probability proportional to the number of
occupants. This description, which is due to Dubins and Pitman, first appears
in print in section 11 of Aldous (1983). It was used initially in connection with
the Ewens and Dirichlet-multinomial models, but has subsequently been applied
more broadly to general partition models.

6 Random permutations

Beginning with the uniform distribution on the set Πn of permutations of [n], the
exponential family with canonical parameter θ = log(λ) and canonical statistic
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#σ equal to the number of cycles is

qn(σ) = λ#σ/λ↑n.

The Stirling number of the first kind, Sn,k, is the number of permutations
of [n] having exactly k cycles, for which λ↑n =

∑n
k=1 Sn,kλ

k is the ordinary
generating function. The cycles of the permutation determine a partition of [n]
whose distribution is (2), and a partition of the integer n whose distribution is
(7). From the cumulant function

log(λ↑n) =
n−1
∑

j=0

log(j + λ)

it follows that #σ = X0 + · · · + Xn−1 is the sum of independent Bernoulli
variables with parameter E(Xj) = λ/(λ + j), which is evident also from the
Chinese restaurant representation. For large n, the number of cycles is roughly
Poisson with parameter λ log(n), implying that λ̂ ≃ #σ/ log(n) is a consistent
estimate as n → ∞, but practically inconsistent.

A minor modification of the Chinese restaurant process also generates a
random permutation by keeping track of the cyclic arrangement of customers
at tables. After n customers are seated, the next customer chooses a table with
probability (5) or (6), as determined by the partition process. If the table is
occupied, the new arrival sits to the left of one customer selected uniformly at
random from the table occupants. The random permutation thus generated is
j 7→ σ(j) from j to the left neighbour σ(j).

The cycles of a permutation σ : [n] → [n] determine a partition Bσ ∈ En,
which is a mapping Πn → En from permutations to partitions. Thus, any
probability distribution pn on partitions can be lifted to a probability distri-
bution qn(σ) = pn(Bσ)/Γ(Bσ) on permutations. Provided that the partition
process {pn} is consistent and exchangeable, the lifted distributions {qn} are
exchangeable and mutually consistent under the projection Πn → Πn−1 on per-
mutations in which element n is deleted from the cycle representation (Aldous,
1983; Pitman, 2006, section 3.1). In this way, every infinitely exchangeable ran-
dom partition also determines an infinitely exchangeable random permutation
σ : N → N of the natural numbers. Since the group acts on itself by conjuga-
tion, distributional exchangeability in this context is not to be confused with
uniformity on Πn.

7 On the number of unseen species

A partition of the set [n] is a set of blocks, and the block sizes determine a
partition of the integer n. For example, the partition 15|23|4 of the set [5] is
associated with the integer partition 2+2+1, one singleton and two doubletons.
An integer partition m = (m1, . . . ,mn) is a list of multiplicities, also written
as m = 1m12m2 · · ·nmn , such that

∑

jmj = n. The number of blocks, usually
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called the number of parts of the integer partition, is the sum of the multiplicities
m. =

∑

mj .
Under the natural action B 7→ πBπ−1 of permutations π on set partitions,

each orbit is associated with a partition of the integer n. The multiplicity vector
m contains all the information about block sizes, but there is a subtle transfer
of emphasis from block sizes to the multiplicities of the parts.

By definition, an exchangeable distribution on set partitions is a function
only of the block sizes, so pn(B) = qn(m), where m is the integer partition
corresponding to B. Since there are

n!
∏n

j=1(j!)
mjmj !

set partitions B corresponding to a given integer partition m, to each exchange-
able distribution pn on set partitions there corresponds a marginal distribution

qn(m) = pn(B) ×
n!

∏n
j=1(j!)

mjmj !

on integer partitions. For example, the Ewens distribution on integer partitions
is

λm.Γ(λ)
∏

Γ(j)mj

Γ(n+ λ)
×

n!
∏n

j=1(j!)
mjmj !

=
λm. n! Γ(λ)

Γ(n+ λ)
∏

j j
mjmj !

, (7)

where the combinatorial factor n!/
∏

j j
mjmj ! is the size of the conjugacy classm,

i.e. the number of permutations whose cycle structure is m.
Arratia, Barbour and Tavaré, (1992) noted that this version leads naturally

to an alternative description of the Ewens distribution in which the multiplic-
ities M = M1, . . . ,Mn are independent Poisson random variables with mean
E(Mj) = λ/j. Then the conditional distribution pr(M = m |

∑n
j=1 jMj = n)

is the Ewens integer-partition distribution with parameter λ (Kingman 1993,
section 9.5). In fact, we may consider the more general two-parameter Pois-
son model with means E(Mj) = λθj/j for λ, θ > 0, in which case the pair
(
∑

Mj ,
∑

jMj) is minimal sufficient for (θ, λ), and the conditional distribution
given

∑n
j=1 jMj is (7) independent of θ. For a response vector in the form of an

integer partition, for example Fisher (1943) or Efron and Thisted (1976), this
representation leads naturally to a simple method of estimation and testing,
using Poisson log-linear models with model formula 1 + j and offset − log(j).

The problem of estimating the number of unseen species was first tackled in a
paper by Fisher (1943), using an approach that appears to be entirely unrelated
to partition processes. Specimens from species i occur as a Poisson process
with rate ρi, the rates for distinct species being independent and identically
distributed gamma random variables. The number Ni ≥ 0 of occurrences of
species i in an interval of length t is a negative binomial random variable

pr(Ni = x) = (1− θ)νθx
Γ(ν + x)

x! Γ(ν)
. (8)
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In this setting, θ = t/(1+t) is a monotone function of the sampling time, whereas
ν > 0 is a fixed number independent of t. Specimen counts for distinct species
are independent and identically distributed random variables with parameters
ν > 0 and 0 < θ < 1.

The probability that no specimens from species i occur in the sample is
(1− θ)ν , the same for every species. Most species are unlikely to be observed if
either θ is small, i.e. the time interval is short, or ν is small.

Let Mx be the number of species occurring x ≥ 0 times, so that M. is
the unknown total number of species of which M. − M0 are observed. The
approach followed by Fisher is to estimate the parameters θ, ν by conditioning
on the number of species observed and regarding the observed multiplicities Mx

for x ≥ 1 as multinomial with parameter vector proportional to the negative
binomial frequencies (8). For Fisher’s entomological examples, this approach
pointed to ν = 0, consistent with the Ewens distribution (7), and indicating
that the data are consistent with the number of species being infinite. Fisher’s
approach using a model indexed by species is less direct for ecological purposes
than a process indexed by specimens. Nonetheless, subsequent analyses by Good
and Toulmin (1956), Holgate (1969) and Efron and Thisted (1976) showed how
Fisher’s model can be used to make predictions about the likely number of new
species in a subsequent temporal extension of the original sample. This amounts
to a version of the Chinese restaurant process.

At this point, it is worth clarifying the connection between Fisher’s negative
binomial formulation and the Ewens partition formulation. The relation be-
tween them is the same as the relation between binomial and negative binomial
sampling schemes for a Bernoulli process: they are not equivalent, but they are
complementary. The partition formulation is an exchangeable process indexed
by specimens: it gives the distribution of species numbers in a sample consisting
of a fixed number of specimens. Fisher’s version is also an exchangeable pro-
cess, in fact an iid process, but this process is indexed by species: it gives the
distribution of the sample composition for a fixed set of species observed over
a finite period. In either case, the conditional distribution given a sample con-
taining k species and n specimens is the distribution induced from the uniform
distribution on the set of Sn,k permutations having k cycles. For the sorts of
ecological or literary applications considered by Good and Toulmin (1956) or
Efron and Thisted (1976), the partition process indexed by specimens is much
more direct than one indexed by species.

Fisher’s finding that the multiplicities decay as E(Mj) ∝ θj/j, proportional
to the frequencies in the log-series distribution, is a property of many processes
describing population structure, either social structure or genetic structure. It
occurs in Kendall’s (1975) model for family sizes as measured by surname fre-
quencies. One explanation for universality lies in the nature of the transition
rates for Kendall’s process, a discussion of which can be found in section 2.4 of
Kelly (1978).
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8 Equivariant partition models

A family pn(σ; θ) of distributions on permutations indexed by a parameter ma-
trix θ, is said to be equivariant under the induced action of the symmetric
group if pn(σ; θ) = pn(gσg

−1; gθg−1) for all σ, θ, and for each group element
g : [n] → [n]. By definition, the parameter space is closed under conjugation:
θ ∈ Θ implies gθg−1 ∈ Θ. The same definition applies to partition models.
Unlike exchangeability, equivariance is not a property of a distribution, but a
property of the family. In this setting, the family is indexed by θ ∈ Θ for some
fixed n. There is no implication that the family pn is the same as the family of
marginal distributions induced by deletion from [n+ 1].

Exponential family models play a major role in both theoretical and applied
work, so it is natural to begin with such a family of distributions on permutations
of the matrix-exponential type

pn(σ; θ) = α#σ exp(tr(σθ))/Mα(θ),

where α > 0 and tr(σθ) =
∑n

j=1 θσ(j),j is the trace of the ordinary matrix
product. The normalizing constant is the α-permanent

Mα(θ) = perα(K) =
∑

σ

α#σ
n
∏

j=1

Kσ(j),j

where Kij = exp(θij) is the component-wise exponential matrix. This family of
distributions on permutations is equivariant.

The limit of the α-permanent as α → 0 gives the sum of cyclic products

cyp(K) = lim
α→0

α−1 perα(K) =
∑

σ:#σ=1

n
∏

j=1

Kσ(j),j ,

giving an alternative expression for the α-permanent

perα(K) =
∑

B∈En

α#B
∏

b∈B

cyp(K[b])

as a sum over partitions. The induced marginal distribution (11) on partitions
is of the product-partition type recommended by Hartigan (1990), and is also
equivariant. Note that the matrix θ and its transpose determine the same distri-
bution on partitions, but they do not usually determine the same distribution
on permutations. The α-permanent has a less obvious convolution property
that helps to explain why this function might be expected to occur in partition
models:

∑

b⊂[n]

perα(K[b]) perα′(K[b̄]) = perα+α′(K). (9)

The sum extends over all 2n subsets of [n], and b̄ is the complement of b in
[n]. A derivation can be found in section 2.4 of McCullagh and Møller (2006).
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If B is a partition of [n], the symbol K · B = B · K denotes the Hadamard
component-wise matrix product for which

perα(K ·B) =
∏

b∈B

perα(K[b])

is the product over the blocks of B of α-permanents restricted to the blocks.
Thus the function B 7→ perα(K ·B) is of the product-partition type.

With α,K as parameters, we may define a family of probability distributions
on Ek

n , i.e. partitions of [n] having k or fewer blocks, as follows:

pnk(B) = k↓#B perα/k(K · B)/ perα(K). (10)

The fact that (10) is a probability distribution on En follows from the convolution
property of permanents. The limit as k → ∞

pn(B) = α#B
∏

b∈B

cyp(K[b])/ perα(K), (11)

is a product-partition model satisfying the conditional independence property
(3).

Properties of the α-permanent are discussed by Vere-Jones (1997) and by
McCullagh and Møller (2006) in the context of point processes. For K = 1n, the
n× n matrix whose elements are all one, the α-permanent is, by definition, the
generating function for the Stirling numbers of the first kind. Thus, perα(1n) =
α↑n is the ascending factorial function, and for this exchangeable case, the
distributions (10) and (11) coincide with (1) and (2).

9 Further applications of partition models

Partition models are used to construct cluster processes for use in classification
and cluster analysis. Cluster analysis means a partitioning of the sample units
into non-overlapping blocks such that the Y -values in Rd (feature values) are
more similar within blocks than between blocks. It is important to remember
that the goal of cluster analysis is not a partition of the feature space Rd, but
a partition of the finite set of units or specimens.

Exchangeable partition models are used to construct non-trivial, processes
suitable for cluster analysis. See Richardson and Green (1997), Fraley and
Raftery (2002) or Booth, Casella and Hobert (2008) for a discussion of compu-
tational techniques. The simplest of these models is the marginal Gauss-Ewens
process in which the sample partition B[n] is to be inferred from the finite se-
quence Y [n]. The conditional distribution pn(B |Y [n]) on En is the posterior
distribution on clusterings or partitions of [n], and E(B |Y [n]) is the array of
one-dimensional marginal distributions for pairs of units, i.e. E(Bij |Y [n]) is
the posterior probability that units i, j belong to the same block. The condi-
tional distribution pn(B |Y [n]) contains further information about triplets and
k-tuples of units, from which it is possible in principle to compute the posterior
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distribution for the number of clusters or blocks. In estimating the number of
clusters, it is important to distinguish between the sample number #B[n], which
is necessarily finite, and the population number #B[N], which could be infinite
(McCullagh and Yang, 2008). The latter problem is essentially the same as esti-
mating the number of unseen species given that the blocks are so well separated
that Y [n] determines B[n].

The same Gauss-Ewens model may be used for density estimation, which
refers to the conditional distribution of Yn+1 given the sample values. Usually,
this is to be done for an exchangeable process in the absence of external covariate
or relational information about the units. In the computer-science literature,
cluster detection is also called unsupervised learning.

Exchangeable partition models are also used to provide a Bayesian solution
to the multiple comparisons problem (Gopalan and Berry 1998). In this setting
k is the number of distinct treatments, and the key idea is to associate with each
partition B of [k] a subspace VB ⊂ Rk equal to the span of the columns of B.
Thus, VB consists of vectors x such that xr = xs if Brs = 1. For a treatment
factor having k levels with values τ1, . . . , τk, the Gauss-Ewens prior distribution
on Rk puts positive mass on the subspaces VB for each B ∈ Ek. Likewise, the
posterior distribution also puts positive probability on these subspaces, which
enables us to compute in a coherent way the posterior probability pr(τ ∈ VB | y)
or the marginal posterior probability pr(τr = τs | y).
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de Probabilités de Saint-Flour XIII Springer Lecture Notes in Mathematics
vol 1117, 1–198.

[2] Aldous, D.J. (1996) Probability distributions on cladograms. In Random
Discrete Structures. IMA Vol. Appl. Math 76. Springer, New York, 1–18.

[3] Arratia, R., Barbour, A.D. and Tavaré, S. (1992) Poisson process approx-
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