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1 The statistical model

When applying nonparametric regression methods, the researcher is interested
in estimating the relationship between one dependent variable, Y , and one or
several covariates, X1, . . . , Xq. We discuss here the situation with one covariate,
X (the case with multiple covariates is addressed in the references provided
below). The relationship between X and Y can be expressed as the conditional
expectation

E(Y |X = x) = f(x).

Unlike in parametric regression, the shape of the function f(·) is not restricted
to belong to a specific parametric family such as polynomials.

This representation for the mean function is the key difference between para-
metric and nonparametric regression, and the remaining aspects of the statistical
model for (X,Y ) are similar between both regression approaches. In particu-
lar, the random variable Y is often assumed to have a constant (conditional)
variance, Var(Y |X) = σ2, with σ2 unknown. The constant variance and other
common regression model assumptions, such as independence, can be relaxed
just as in parametric regression.

2 Kernel methods

Suppose that we have a dataset available with observations (x1, y1), . . . , (xn, yn).
A simple kernel-based estimator of f(x) is the Nadaraya-Watson kernel regres-

sion estimator, defined as

f̂h(x) =

∑n

i=1Kh(xi − x)yi
∑n

i=1Kh(xi − x)
, (1)
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with Kh(·) = K(·/h)/h for some kernel function K(·) and bandwidth param-
eter h > 0. The function K(·) is usually a symmetric probability density and
examples of commonly used kernel functions are the Gaussian kernel K(t) =
(
√
2π)−1 exp(−t2/2) and the Epanechnikov kernel K(t) = max{ 3

4 (1− t2), 0}.
Generally, the researcher is not interested in estimating the value of f(·) at

a single location x, but in estimating the curve over a range of values, say for all
x ∈ [ax, bx]. In principle, kernel regression requires computing (1) for any value

of interest. In practice, f̂h(x) is calculated on a sufficiently fine grid of x-values
and the curve is obtained by interpolation.

We used the subscript h in f̂h(x) in (1) to emphasize the fact that the
bandwidth h is the main determinant of the shape of the estimated regression,
as demonstrated in Figure 1. When h is small relative to the range of the
data, the resulting fit can be highly variable and look “wiggly.” When h is
chosen to be larger, this results in a less variable, more smooth fit, but it makes
the estimator less responsive to local features in the data and introduces the
possibility of bias in the estimator. Selecting a value for the bandwidth in such
a way that it balances the variance with the potential bias is therefore a crucial
decision for researchers who want to apply nonparametric regression on their
data. Data-driven bandwidth selection methods are available in the literature,
including in the references provided below.

A class of kernel-based estimators that generalizes the Nadaraya-Watson
estimator in (1) is referred to as local polynomial regression estimators. At each

location x, the estimator f̂h(x) is obtained as the estimated intercept, β̂0, in the
weighted least squares fit of a polynomial of degree p,

min
β

n
∑

i=1

(yi − β0 + β1(xi − x) + · · ·+ βp(xi − x)p)Kh(xi − x).

This estimator can be written explicitly in matrix notation as

f̂h(x) = (1, 0, . . . , 0)
(

XT
xW xXx

)

−1

XT
xW xY , (2)

where Y = (y1, . . . , yn)
T , W x = diag{Kh(x1 − x), . . . ,Kh(xn − x)} and

Xx =







1 x1 − x · · · (x1 − x)p

...
...

...
1 xn − x · · · (xn − x)p






.

It should be noted that the Nadaraya-Watson estimator (1) is a special case
of the local polynomial regression estimator with p = 0. In practice, the local
linear (p = 1) and local quadratic estimators (p = 2) are frequently used.

An extensive literature on kernel regression and local polynomial regression
exists, and their theoretical properties are well understood. Both kernel re-
gression and local polynomial regression estimators are biased but consistent
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Figure 1: Dates (Julian days) of first sightings of bank swallows in Cayuga Lake
basin, with three kernel regressions using bandwidth values h calculated as the range
of years multiplied by 0.05 (−−), 0.2 (–) and 0.4 (−·).

estimators of the unknown mean function, when that function is continuous
and sufficiently smooth. For further information on these methods, we refer
to reader to the monographs by Wand and Jones (1995) and Fan and Gijbels
(1996).

3 Spline methods

In the previous section, the unknown mean function was assumed to be locally

well approximated by a polynomial, which led to local polynomial regression.
An alternative approach is to represent the fit as a piecewise polynomial, with
the pieces connecting at points called knots. Once the knots are selected, such
an estimator can be computed globally in a manner similar to that for a para-
metrically specified mean function, as will be explained below. A fitted mean
function represented by a piecewise continuous curve only rarely provides a satis-
factory fit, however, so that usually the function and at least its first derivative
are constrained to be continuous everywhere, with only the second or higher
derivatives allowed to be discontinuous at the knots. For historical reasons,
these constrained piecewise polynomials are referred to as splines, leading to
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the name spline regression or spline smoothing for this type of nonparametric
regression.

Consider the following simple type of polynomial spline of degree p:

β0 + β1x+ · · ·+ βpx
p +

K
∑

k=1

βp+k(x − κk)
p
+, (3)

where p ≥ 1, κ1, . . . , κK are the knots and (·)p+ = max{(·)p, 0}. Clearly, (3)
has continuous derivatives up to degree (p − 1), but the pth derivative can be
discontinuous at the knots. Model (3) is constructed as a linear combination of
basis functions 1, x, . . . , xp, (x−κ1)p+, . . . , (x−κK)p+. This basis is referred to as
the truncated power basis. A popular set of basis functions are the so-called B-

splines. Unlike the truncated power splines, the B-splines have compact support
and are numerically more stable, but they span the same function space. In what
follows, we will write ψj(x), j = 1, . . . , J for a set of (generic) basis functions
used in fitting regression splines, and replace (3) by β1ψ1(x) + · · ·+ βJψJ(x).

For fixed knots, a regression spline is linear in the unknown parameters β =
(β1, . . . , βJ)

T and can be fitted parametrically using least squares techniques.
Under the homoskedastic model described in Section 1, the regression spline

estimator for f(x) is obtained by solving

β̂ = argmin
β

n
∑

i=1



yi −
J
∑

j=1

βjψj(xi)





2

(4)

and setting f̂(x) =
∑J

j=1 β̂jψj(x). Since deviations from the parametric shape
can only occur at the knots, the amount of smoothing is determined by the
degree of the basis and the location and number of knots. In practice, the degree
is fixed (with p = 1, 2 or 3 as common choices) and the knot locations are usually
chosen to be equally-spaced over the range of the data or placed at regularly
spaced data quantiles. Hence, the number of knots K is the only remaining
smoothing parameter for the spline regression estimator. AsK (and therefore J)
is chosen to be larger, increasingly flexible estimators for f(·) are produced. This
reduces the potential bias due to approximating the unknown mean function by
a spline function, but increases the variability of the estimators.

The smoothing spline estimator is an important extension of the regression
spline estimator. The smoothing spline estimator for f(·) for a set of data gen-
erated by the statistical model described in Section 1 is defined as the minimizer
of

n
∑

i=1

(yi − f(xi))
2 + λ

∫ bx

ax

(f (p)(t))2dt, (5)

over the set of all functions f(·) with continuous (p− 1)th derivative and square
integrable pth derivative, and λ > 0 is a constant determining the degree of
smoothness of the estimator. Larger values of λ correspond to smoother fits.
The choice p = 2 leads to the popular cubic smoothing splines. While not
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immediately obvious from the definition, the function minimizing (5) is exactly
equal to a special type of regression spline with knots at each of the observation
points x1, . . . , xn (assuming each of the locations xi is unique).

Traditional regression spline fitting as in (4) is usually done using a relatively
small number of knots. By construction, smoothing splines use a large number
of knots (typically, n knots), but the smoothness of the function is controlled by
a penalty term and the smoothing parameter λ. The penalized spline estimator
represents a compromise between these two approaches. It uses a moderate
number of knots and puts a penalty on the coefficients of the basis functions.
Specifically, a simple type of penalized spline estimator for m(·) is obtained by
solving

β̂ = argmin
β

n
∑

i=1



yi −
J
∑

j=1

βjψj(xi)





2

+ λ

J
∑

j=1

β2
j (6)

and setting f̂λ(x) =
∑J

j=1 β̂jψj(x) as for regression splines. Penalized splines
combine the advantage of a parametric fitting method, as for regression splines,
with the flexible adjustment of the degree of smoothness as in smoothing splines.
Both the basis function and the exact form of the penalization of the coefficients
can be varied to accommodate a large range of regression settings.

Spline-based regression methods are extensively described in the statistical
literature. While the theoretical properties of (unpenalized) regression splines
and smoothing splines are well established, results for penalized regression
splines have only recently become available. The monographs by Wahba (1990),
Eubank (1999) and Ruppert et al. (2003) are good sources of information on
spline-based methods.
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