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Summary

Random coefficient models are intended for settings with two or more sources of random variation.

The widest range of applications is found for them when observational units form natural clusters,

such that the units within a cluster are more similar than units in general. Models for independent

observations have to be extended to allow for within- and between-cluster variation.
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Independence of the observations is a key assumption of many standard statistical methods, such

as analysis of variance (ANOVA) and ordinary regression, and some of its extensions. Common ex-

amples of data structures that do not fit into such a framework arise in longitudinal analysis, in which

observations are made on subjects at subject-specific sequences of time points, and in studies that in-

volve subjects (units) ocurring naturally in clusters, such as individuals within families, schoolchildren

within classrooms, employees within companies, and the like. The assumption of independence of the

observational units is not tenable when observations within a cluster tend to be more similar than

observations in general. Such similarity can be conveniently represented by a positive correlation

(dependence).

This article describes an adaptation of the ordinary regression for clustered observations. Such

observations require two indices, one for elements within clusters, i = 1, . . . , nj , and another for

clusters, j = 1, . . . ,m. Thus, we have n = n1 + · · · + nm elementary units and m clusters. The

ordinary regression model

yij = xij β + εij , (1)

with the usual assumptions of normality, independence and equal variance (homoscedasticity) of the

deviations εij , εij ∼ N (0, σ2), i.i.d., implies that the regressions within the clusters j have a common

vector of coefficients β. This restriction can be relaxed by allowing the regressions to differ in their

intercepts. A practical way of defining such a model is by the equation

yij = xij β + δj + εij , (2)

where δj , j = 1, . . . ,m, are a random sample from a centred normal distribution, δj ∼ N (0, σ2
B),

i.i.d., independent from the ε’s. This differs from the model for analysis of covariance (ANCOVA)

only by the status of the deviations δj . In ANCOVA, they are fixed (constant across hypothetical

replications), whereas in (2) they are random.

In the model in (2), the within-cluster regressions are parallel — their intercepts are β0 + δj ,

but the coefficients on all the other variables in x are common to the clusters. A more appealing

interpretation of the model is that observations in a cluster are correlated,

cor (yi1,j , yi2,j) =
σ2
B

σ2 + σ2
B

,

because they share the same deviation δj . Further relaxation of how the within-cluster regressions

differ is attained by allowing some (or all) the regression slopes to be specific to the clusters. We select

a set of variables in x, denoted by z, and assume that the regressions with respect to these variables

differ across the clusters, but are constant with respect to the remaining variables;

yij = xij β + zij δj + εij , (3)

2



where δj , j = 1, . . . ,m, are a random sample from a multivariate normal distribution N (0,ΣB),

independent from the ε’s. We say that the variables in z are associated with (cluster-level) variation.

The variance of an observation yij , without conditioning on the cluster j, is

var (yij) = σ2 + xijΣB x⊤

ij .

We refer to σ2 and zijΣB z⊤ij as the variance components (at the elementary and cluster levels, re-

spectively). The principle of invariance with respect to linear transformations of z implies that the

intercept should always be included in z, unless z is empty, as in the model in (1). The function

V (z) = zΣBz
⊤, over the feasible values of z, defines the pattern of variation, and it can be described

by its behaviour (local minima, points of inflection, and the like). By way of an example, suppose

z contains the intercept and a single variable z. Denote the variances in ΣB by σ2
0 and σ2

z , and the

covariance by σ0z . Then

V (z) = σ2
0 + 2zσ0z + z2σ2

z , (4)

and this quadratic function has a unique minimum at z∗ = −σ0z/σ
2
z , unless σ

2
z = 0, in which case we

revert to the model in (2) in which V (z) is constant. Figure 1 illustrates four patterns of variation on

examples with a single covariate.

The model in (3) is fitted by maximum likelihood (ML) which maximizes the log-likelihood function

l
(
β, σ2,ΣB

)
= −

1

2

m∑

j=1

[
log {det (Vj)} +

(
yj −Xjβ

)⊤
V−1

j

(
yj −Xjβ

)]
, (5)

where Vj is the variance matrix of the observations in cluster j, yj the vector of the outcomes for

the observations in cluster j, and Xj the corresponding regression design matrix formed by vertical

stacking of the rows xij , i = 1, . . . , nj . The variation design matrices Zj , j = 1, . . . ,m, are defined

similarly; with them, Vj = σ2Inj
+ ZjΣBZ

⊤

j , where Inj
is the nj × nj identity matrix. The Fisher

scoring algorithm for maximising the log-likelihood in (5) is described in the Appendix; for details

and applications, see see Longford (1993), and for an alternative method Goldstein (2000). These

and other algorithms are implemented in most standard statistical packages. A key to their effective

implementation are closed-form expressions for the inverse and determinant of patterned matrices

(Harville, 1997).

Model selection entails two tasks, selecting a set of variables to form x and selecting its subset

to form z. The variables in x can be defined for elements or clusters; the latter can be defined as

being constant within clusters. Inclusion of cluster-level variables in z does not have an interpretation

in terms of varying regression coefficients, so associating them with variation is in most contexts not

meaningful. However, the identity in (4) and its generalisations for ΣB with more than two rows and

columns indicate that z can be used for modelling variance heterogeneity. The likelihood ratio test

statistic and various information criteria can be used for selecting among alternative models, so long
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Figure 1: Patterns of variation in random coefficient models with a single covariate. Thick dashes
mark the average regression (xβ) and thin solid lines the within-cluster regressions (xβ + zδj). In
the megaphone pattern, the matrix ΣB is singular, with σ2

z > 0.
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as one is a submodel of the other; that is, the variables in both x and z of one model are subsets of

(or coincide with) their counterparts in the other model.

Random coefficients can be applied to a range of models much wider than ordinary regression. In

principle, we can conceive any basis model, characterized by a vector of parameters, which applies to

every cluster. A subset of these parameters is constant across the clusters and the remainder varies

according to a model for cluster-level variation. The latter model need not be a multivariate normal

distribution, although suitable alternatives to it are difficult to identify. The basis model itself can be

complex, such as a random coefficient model itself. This gives rise to three- or, generally, multilevel

models, in which elements are clustered within two-level units, these units in three-level units, and so

on.

Generalized linear mixed models (GLMM) have generalized linear models (McCullagh and Nelder,

1989) as their basis; see Pinheiro and Bates (2000). For cluster j we posit the model

g
{
E(yj | δj)

}
= Xjβ + Zjδj ,

with a (monotone) link function g, which transforms the expected outcomes to a linear scale; the

outcomes (elements of yj) are conditionally independent given δj and have a specified distribution,

such as binary or gamma. Some advantage, in both interpretation and computing, is gained by using

canonical link functions, for which the conditional likelihood has a compact set of sufficient statistics.

For example, the logistic link, g(p) = log(p) − log(1 − p), is the canonical link for binary outcomes,

and the logarithm is the canonical link for Poisson outcomes. Models with the (standard) normality

assumptions correspond to the link g(y) = y.

Without conditioning, the likelihood for non-normally distributed yj has an intractable form. An

established approach to fitting GLMM maximises a (tractable) normal-like approximation to the log-

likelihood. This algorithm can be described as an iteratively reweighted version of the Fisher scoring

(or another) algorithm for fitting the (normal) linear mixed model. With the advent of modern

computing, using numerical quadrature and other methods for numerical integration has because

feasible, especially for fitting models with univariate deviations δj . An alternative framework for

GLMM and a computational algorithm for fitting them are constructed by Lee and Nelder (2001).

Random coefficient models are well suited for analysing surveys in which clusters arise naturally

as a consequence of the organisation (design) of the survey and the way the studied population is

structured. They can be applied also in settings in which multiple observations are made on subjects,

as in longitudinal studies (Molenberghs and Verbeke, 2000). In some settings it is contentious as to

whether the clusters should be regarded as fixed or random. For example, small-area estimation (Rao,

2003) is concerned with inferences about districts or another partition of a country when some (or

all) districts are represented in the analysed national survey by small subsamples. In one perspective,

district-level quantities, such as their means of a variable, should be regarded as fixed because they are
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the inferential targets, fixed across hypothetical replications. When they are assumed to be random

the (random coefficient) models are often more parsimonious than their fixed-effects (ANCOVA)

counterparts, because the number of parameters involved does not depend on the number of clusters.

Borrowing strength (Robbins, 1955, Efron and Morris, 1972) is a general principle for efficient

inference about each cluster (district) by exploiting the similarity of the clusters. It is the foundation

of the empirical Bayes analysis, in which the between-cluster variance matrix plays a role similar to

the Bayes prior for the within-cluster regression coefficients. The qualifier ‘empirical’ refers to using

a data-based estimator Σ̂B in place of the unknown ΣB .
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Appendix. Fisher scoring algorithm

This Appendix describes a method for fitting a random coefficient model by maximum likelihood. We

prefer to use the scaled variance matrices Wj = σ−2Vj and Ω = σ−2ΣB , so that Wj = Ind
+ZjΩZ⊤

j

does not depend on σ2. The log-likelihood in (5) is equal to

l
(
β, σ2,Ω

)
= −

1

2

m∑

j=1

[
n log

(
σ2

)
+ log {det (Wj)} +

1

σ2
e⊤j W

−1
j ej

]
. (6)

where ej = yj − Xjβ is the vector of residuals for cluster j. We have the following closed-form

expressions for the inverse and determinant of Wj :

W−1
j = Ind

− ZjΩG−1
j Z⊤

j

det (Wj) = σ2nd det (Gj) , (7)

where Gj = Ir +Z⊤

j ZjΩ. All the matrices Gj have the same dimension, r× r, where r is the number

of variables in Z.

Assuming that the log-likelihood l has a single maximum, it can be found as the root of the score

vector. By matrix differentiation we obtain

∂l

∂β
=

1

σ2

m∑

j=1

X⊤

j W
−1
j ej ,

and so the maximum likelihood estimator of β is the generalised least-squares estimator

β̂ =




m∑

j=1

X⊤

j Ŵ
−1

j Xj




−1
m∑

j=1

X⊤

j Ŵ
−1

j yj . (8)

The matrices Ŵj are the estimated versions of Wj , with estimator Ω̂ substituted for Ω. Estimation

of Ω is described below.

The elementary-level (residual) variance σ2 is estimated by the root of its score,

∂l

∂σ2
= −

1

2


 n

σ2
−

1

σ4

m∑

j=1

e⊤j W
−1
j ej


 ,

which is

σ̂2 =
1

n

m∑

j=1

e⊤j Ŵ
−1

j ej .

The elements of Ω are estimated by the Fisher scoring algorithm. Let these elements, without any

redundancy, comprise the vector ω. In most applications, ω comprises the 1
2r×(r+1) unique elements,

r variances and 1
2r × (r − 1) covariances. The Fisher scoring algorithm proceeds by iterations that

update the estimate of ω, based on the score vector s and the expected information matrixH evaluated

at the current solution. The vector s and matrix H are derived by matrix differentiation. See Magnus

and Neudecker (1988) and Harville (1997) for background.
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Let ih be the (r × 1) indicator vector for element h. For example, when r = 5, i2 = (0, 1, 0, 0, 0)⊤.

The element of ω that corresponds to the (scaled) covariance (h, h′) in Ω can be expressed as

ω = i
⊤

hΩih′ ,

and ∂Ω/∂ω = ih i
⊤

h′ + ih′ i
⊤

h . If we replace each (scaled) variance in ω by its half, then this expression

holds also for these half-variance parameters. With this parametrisation, noting that ∂Wj/∂ω =

Zj ∂Ω/∂ωZ⊤

j , we have

∂l

∂ω
= −

1

2

m∑

j=1

{
tr

(
W−1

j

∂Wj

∂ω

)
−

1

σ2
e⊤j W

−1
j

∂Wj

∂ω
W−1

j ej

}

=

m∑

j=1

(
−i⊤h bUUj ih′ +

1

σ2
u⊤

j ih u
⊤

j ih′

)

=

m∑

j=1

(
−Uj,hh′ +

1

σ2
uj,h uj,h′

)
,

where bUUj = Z⊤

j W
−1
j Zj , uj = Z⊤

j W
−1
j ej , Uj,hh′ is the (h, h′)-element of bUUj and uj,h the h-

element of uj . Multiplying by a vector ih amounts to extracting an element. Thus, evaluation of the

score ∂l/∂ω requires calculation of quadratic forms q⊤W⊤

j Zj . From (7) we have, for an arbitrary

nd × 1 vector q, the identity

Z⊤

j W
−1
j q = G−1

j Z⊤

j q ,

so we do not have to form the matrices Wj and do not have to invert any matrices of large size.

Further differentiation yields the expression

∂2l

∂ω1 ∂ω2
=

m∑

j=1

[
i⊤h1

bUUj

∂Ω

∂ω2
bUUjih′

1

−
2

σ2

{
u⊤

j ih1
u⊤

j

∂Ω

∂ω2
bUUjih′

1

+ u⊤

j ih′

1

u⊤

j

∂Ω

∂ω2
bUUjih1

}]

=
m∑

j=1

{
Uj,h1h2

Uj,h′

1
h′

2

+ Uj,h′

1
h2

Uj,h1h
′

2

−
2

σ2

(
uj,h1

uj,h2
Uj,h′

1
h′

2

+ uj,h1
uj,h′

2

Uj,h′

1
h2

+ uj,h′

1

uj,h2
Uj,h1h

′

2

+ uj,h′

1

uj,h′

2

Uj,h1h2

)}

for ω1 and ω2 associated with the respective elements (h1 , h
′

1) and (h2 , h
′

2) of Ω. The Hessian matrix,

its negative expectation, comprises elements

H (ω1 , ω2) =

m∑

j=1

(
i
⊤

h1
bUUjih2

i
⊤

h′

1

bUUjih′

2
+ i

⊤

h′

1

bUUjih2
i
⊤

h1
bUUjih′

2

)

=

m∑

j=1

(
Uj,h1h2

Uj,h′

1
h′

2

+ Uj,h′

1
h2

Uj,h1h
′

2

)
,

which are cluster-level totals of the cross-products of various elements of bUUj . In each iteration t,

the estimate of ω is updated as

ω̂
(t) = ω̂

(t−1) + rĤ
−1

t ŝt ,
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where r = 1, unless the updated matrix Ω(t) is not positive definite. One way to avoid this is to

keep halving r until the updated matrix Ω(t) is positive definite. Having to do so in many (or all)

iterations is usually a sign of having included too many variables in Z, and the model should be revised

accordingly. An alternative approach estimates the Cholesky (or another) decomposition of Ω. The

iterations are terminated when the norm of the updating vector H−1s is sufficiently small.

Based on an article from Lovric, Miodrag (2011), International Encyclopedia of Statistical Science.
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