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1. Overview

Functional data analysis (FDA) refers to the statistical analysis of data samples consisting of random

functions or surfaces, where each function is viewed as one sample element. Typically, the random func-

tions contained in the sample are considered to be independent and to correspond to smooth realizations

of an underlying stochastic process. FDA methodology then provides a statistical approach to the anal-

ysis of repeatedly observed stochastic processes or data generated by such processes. FDA differs from

time series approaches, as the sampling design is very flexible, stationarity of the underlying process is

not needed, and autoregressive-moving average models or similar time regression models play no role,

except where the elements of such models are functions themselves.

FDA also differs from multivariate analysis, the area of statistics that deals with finite-dimensional

random vectors, as functional data are inherently infinite-dimensional and smoothness often is a central

assumption. Smoothness has no meaning for multivariate data analysis, which in contrast to FDA is

permutation invariant. Even sparsely and irregularly observed longitudinal data can be analyzed with

FDA methodology. FDA thus is useful for the analysis of longitudinal or otherwise sparsely sampled

data. It is also a key methodology for the analysis of time course, image and tracking data.

The approaches and models of FDA are essentially nonparametric, allowing for flexible modeling. The

statistical tools of FDA include smoothing, e.g., based on series expansions, penalized splines, or local

polynomial smoothing, and functional principal component analysis. A distinction between smoothing

methods and FDA is that smoothing is typically used in situations where one wishes to obtain an estimate

1



for one non-random object (where objects here are functions or surfaces) from noisy observations, while

FDA aims at the analysis of a sample of random objects, which may be assumed to be completely

observed without noise or to be sparsely observed with noise; many scenarios of interest fall in between

these extremes.

An important special situation arises when the underlying random processes generating the data are

Gaussian processes, an assumption that is often invoked to justify linear procedures and to simplify

methodology and theory. Functional data are ubiquitous and may for example involve samples of density

functions (Kneip and Utikal, 2001), hazard functions, or behavioral tracking data. Application areas that

have been emphasized in the statistical literature include growth curves (Rao, 1958; Gasser et al., 1984),

econometrics and e-commerce (Ramsay and Ramsey, 2002; Jank and Shmueli, 2006), evolutionary biology

(Kirkpatrick and Heckman, 1989; Izem and Kingsolver, 2005), and genetics and genomics (Opgen-Rhein

and Strimmer, 2006; Müller et al., 2008). FDA also applies to panel data as considered in economics and

other social sciences.

2. Methodology

Key FDA methods include functional principal component analysis (Castro et al., 1986; Rice and

Silverman, 1991), warping and curve registration (Gervini and Gasser, 2004) and functional regression

(Ramsay and Dalzell, 1991). Theoretical foundations and asymptotic methods of FDA are closely tied

to perturbation theory of linear operators in Hilbert space (Dauxois et al., 1982; Bosq, 2000; Mas and

Menneteau, 2003); a reproducing kernel Hilbert space approach has also been proposed (Eubank and

Hsing, 2008), as well as Bayesian approaches (Telesca and Inoue, 2008). Finite sample implementations

typically require to address ill-posed problems, emplying suitable regularization, which is often imple-

mented by penalized least squares or penalized likelihood and by truncated series expansions. A broad

overview of methods and applied aspects of FDA can be found in the textbook Ramsay and Silverman

(2005) and some additional reviews are in Rice (2004); Zhao et al. (2004); Müller (2008).

The basic statistical methodologies of ANOVA, regression, correlation, classification and clustering

that are available for scalar and vector data have spurred analogous developments for functional data. An

additional aspect is that the time axis itself may be subject to random distortions and adequate functional

models sometimes need to reflect such time-warping (also referred to as alignment or registration).

Another issue is that often the random trajectories are not directly observed. Instead, for each sample

function one has available measurements on a time grid that may range from very dense to extremely
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sparse. Sparse and randomly distributed measurement times are frequently encountered in longitudinal

studies. Additional contamination of the measurements of the trajectory levels by errors is also common.

These situations require careful modeling of the relationship between the recorded observations and the

assumed underlying functional trajectories (Rice and Wu, 2001; James and Sugar, 2003; Yao et al., 2005a).

Initial analysis of functional data includes exploratory plotting of the observed functions in a

“spaghetti plot” to obtain an initial idea of functional shapes, to check for outliers and to identify

potential “landmarks”. Preprocessing may include outlier removal and registration to adjust for time-

warping (Gasser and Kneip, 1995; Gervini and Gasser, 2004; Liu and Müller, 2004; James, 2007; Kneip

and Ramsay, 2008).

3. Functional Principal Components

Basic objects in FDA are the mean function µ and the covariance function G. For square integrable

random functions X(t),

µ(t) = E(Y (t)), G(s, t) = cov {X(s), X(t)} , s, t ∈ T , (1)

with auto-covariance operator (Af)(t) =
∫
T

f(s)G(s, t) ds. This linear operator of Hilbert-Schmidt type

has orthonormal eigenfunctions φk, k = 1, 2, . . . , with associated ordered eigenvalues λ1 ≥ λ2 ≥ . . .,

such that Aφk = λk φk. The foundation for functional principal component analysis is the Karhunen-

Loève representation of random functions (Karhunen, 1946; Grenander, 1950; Gikhman and Skorokhod,

1969) X(t) = µ(t) +
∞∑
k=1

Ak φk(t), where Ak =
∫
T
(Y (t)− µ(t))φk(t) dt are uncorrelated centered random

variables with var(Ak) = λk, referred to as functional principal components (FPCs).

Estimation of eigenfunctions, eigenvalues and of FPCs is a core objective of FDA. Various smoothing-

based methods and applications for various sampling designs have been considered (Jones and Rice,

1992; Silverman, 1996; Staniswalis and Lee, 1998; Cardot, 2000; James et al., 2000; Paul and Peng,

2009). Estimators employing smoothing methods (local least squares or splines) have been developed

for various sampling schemes (sparse, dense, with errors) to obtain a data-based version of the eigen-

representation, where one regularizes by truncating at a finite number K of included components. The

idea is to borrow strength from the entire sample of functions, rather than estimating each function

separately. The functional data are then represented by the subject-specific vectors of score estimates

Âk, k = 1, . . . ,K, which can be used to represent individual trajectories and for subsequent statistical

analysis (Yao et al., 2005a).
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More adequate representations of functional data are sometimes obtained by fitting pre-specified fixed

basis functions with random coefficients. In particular, B-splines (Sy et al., 1997), P-splines (Yao and

Lee, 2006) and wavelets (Morris and Carroll, 2006) have been successfully applied. A general relation

between mixed linear models and fitting functional models with basis expansion coefficients can be used

to advantage for modeling and implementation of these approaches. In the theoretical analysis, one may

distinguish between an essentially multivariate analysis, which results from assuming that the number of

series terms is actually finite, leading to parametric rates of convergence, and an essentially functional

approach. In the latter, the number of components is assumed to increase with sample size and this leads

to “functional” rates of convergence that depend on the properties of underlying processes, such as decay

and spacing of the eigenvalues of the autocovariance operator.

4. Functional Regression and Related Models

Functional regression models may include one or several functions among the predictors, responses,

or both. For pairs (X,Y ) with centered random predictor functions X and scalar responses Y , the linear

model is

E(Y |X) =

∫
T

(X(s)− µ(s))β(s) ds.

The regression parameter function β can be represented in a suitable basis, for example the eigenbasis,

with coefficient estimates determined by least squares or similar criteria. The functional linear model

has been thoroughly studied, including optimal rates of convergence (Cardot et al., 2003a,b; Yao et al.,

2005b; Cai and Hall, 2006; Hall and Horowitz, 2007; Li and Hsing, 2007; Mas and Pumo, 2009).

The class of useful functional regression models is large, due to the infinite-dimensional nature of the

functional predictors. The case where the response is functional (Ramsay and Dalzell, 1991) also is of

interest. Flexible extensions of the functional linear model for example include nonparametric approaches

(Ferraty and Vieu, 2006), where unfavorable small ball probabilities and the non-existence of a density

in general random function space impose limits on convergence (Hall et al., 2009), and multiple index

models (James and Silverman, 2005). Another extension is the functional additive model (Müller and

Yao, 2008). For functional predictors X = µ +
∑∞

k=1
Akφk and scalar responses Y , this model is given

by

E(Y |X) =

∞∑
k=1

fk(Ak)φk

for smooth functions fk with E(fk(Ak)) = 0.
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Another variant of the functional linear model, which is also applicable for classification purposes, is

the generalized functional linear model E(Y |X) = g{µ +
∫
T

X(s)β(s) ds} with link function g (James,

2002; Escabias et al., 2004; Cardot and Sarda, 2005; Müller and Stadtmüller, 2005). The link function

(and an additional variance function if applicable) is adapted to the (often discrete) distribution of Y ;

the components of the model can be estimated by quasi-likelihood. Besides discriminant analysis via

the binomial functional generalized linear model, various other methods have been studied for functional

clustering and discriminant analysis (James and Sugar, 2003; Chiou and Li, 2007, 2008).

Of practical relevance are extensions towards polynomial functional regression models (Müller and

Yao, 2010), hierarchical functional models (Crainiceanu et al., 2009), models with varying domains, mod-

els with more than one predictor function, and functional (autoregressive) time series models, among

others. In addition to the functional trajectories themselves, derivatives are of interest to study the dy-

namics of the underlying processes (Ramsay and Silverman, 2005). Software for functional data analysis

evolves rapidly and is available from various sources. Freely available software includes for example the

fda package (R and matlab), at http://www.psych.mcgill.ca/misc/fda/software.html,

and the PACE package (matlab), at http://anson.ucdavis.edu/ mueller/data/pace.html.
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