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The simple random walk {Sn : n = 0, 1, ...}, starting at an integer x, is a
stochastic process on the integers, given by S0 = x, Sn = x+X1+...+Xn(n ≥ 1),
where Xn, n ≥ 1, is an independent Bernoulli sequence: P (Xn = 1) = p,
P (Xn = −1) = 1 − p = q, 0 < p < 1. In the case, p = q = 1/2, it is called
the simple symmetric random walk, while if p 6= 1/2, it is asymmetric. By the
binomial theorem, P (Sn = y | S0 = 0) = Cn

(n+y)
2

p(n+y)/2q(n−y)/2, if y and n

are of the same parity, i.e., if either both are odd or both are even. Otherwise,
P (Sn = y | S0 = 0) = 0. Here = Cn

m = n!/(m!(n−m)!).

For c ≤ x ≤ d integers, the probability π(x) that a simple random walk,
starting at x, reaches c before d satisfies the equation

π(x) = pπ(x+ 1) + qπ(x− 1) for c < x < d, π(c) = 1, π(d) = 0, (1)

as shown by conditioning on the first step X1. For the symmetric walk, the
solution of this equation is π(x) = (d − x)/(d − c). Since π(x) → 1 as d → ∞,
the symmetric walk will reach the state c, starting from any state x > c, with
probability one. By symmetry, it will reach every state with probability one.
Iterating this argument one sees that, with probability one, the symmetric ran-
dom walk visits every state infinitely often. That is, the walk is recurrent. For
the asymmetric walk, the solution to (1) is π(x) = (1−(p/q)d−x)/(1−(p/q)d−c).
If p < 1/2, then the limit of this is 1 as d → ∞ and, with probability one, the
random walk will visit c, starting from x > c. On the other hand, if p > 1/2,
then π(x) → (q/p)x−c < 1, as d → ∞. The probability of ever reaching d, start-
ing from x < d is obtained by symmetry as 1 if p > 1/2 and (p/q)d−x if p < 1/2.
The asymmetric simple random walk is thus transient. Indeed, it follows from
the strong law of large numbers (SLLN ) that if p > 1/2, then Sn → ∞ with
probability one as n → ∞; and Sn → −∞, with probability one, if p < 1/2. For
these and other properties of the random walk, such as those described below,
see Feller (1968), Chapter 3, Bhattacharya and Waymire (2009), Chapter 1,
or Durrett (1995), Chapter 3. For additional information, refer to Billingsley
(1968), and Spitzer (1964).

For computation of various probabilities associated with a simple random
walk, the following result proved by D. Andre in 1887 is very useful: Con-
sider the polygonal path of the random walk joining successive points (j, Sj),
(j + 1, Sj+1) (j = 0, 1, ..., n− 1) by line segments. Let y > 0. Then (a) the set
of paths from (0, 0) to (n, y − 1) (n and y − 1 of the same parity) which touch
or cross the level y, is in one-one correspondence with (b) the set of all paths
from (0, 0) to (n, y + 1) (Reflection principle). To prove this, let τ be the first
time a path of the type (a) touches the level y prior to time n. Then replace
the segment of the path from (τ, y) to (n, y − 1) by its mirror reflection about
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the level y. This gives a path of the type (b). Conversely, given any path of the
type (b), reflect about y the segment of the path from (τ, y) to (n, y + 1). This
gives a path of the type (a). Here is an application of this principle.

Example 1 (First passage time distribution of a simple random walk). Let
y be a positive integer, and Fn,y the event that the random walk, starting at zero,
reaches y for the first time at time n, i.e., Fn,y = {Sj 6= y, for 0 ≤ j < n, Sn = y},
n and y of the same parity. Altogether there are Cn

n+y

2

paths from (0, 0) to (n, y),

each having probability p(n+y)/2q(n−y)/2 . Of these, the number which cross or
touch the level y prior to time n and for which Sn−1 = y− 1 is, by the reflection
principle, Cn−1

n+y

2

. Also the number for which Sn−1 = y+1 is Cn−1
n+y

2

. Subtracting

these two from the number Cn
n+y

2

of all paths, one obtains, for all y 6= 0(treating

the case y < 0 by symmetry),

P (Fn,y) = (Cn
n+y

2

−2Cn−1
n+y

2

)p(n+y)/2q(n−y)/2 = (|y|/n)Cn
n+y

2

p(n+y)/2q(n−y)/2 (2)

(n = |y|, |y|+ 2, |y|+ 4, ...).

One may also consider the simple symmetric random walk S0 = x, Sn =
x +X1 + ... + Xn (n ≥ 1), in dimension d ≥ 1, as a stochastic process on the
d-dimensional lattice Zd, with Xn(n ≥ 1) i.i.d. random vectors, taking values
±ej(j = 1, ..., d), each with probability 1/2d. Here ej is the vector whose j-th
coordinate is 1 and the remaining d− 1 coordinates are zero. It was proved by
G. Polya in 1921 that this walk is recurrent in dimensions 1,2, and transient in
higher dimensions.

De Moivre (1756) obtained the normal approximation to the binomial prob-
ability P (Sn = y | S0 = 0), as a combinatorial result. The full potential of
this was realized by Laplace (1812) who formulated and derived the far reach-
ing central limit theorem (CLT ). Apparently, Gauss knew about the normal
distribution as early as 1794, and assuming this as the distribution of errors
of measurement, he obtained his famous method of least squares. Hence the
name Gaussian distribution is often used for the normal distribution. The fi-
nal version of the CLT for a general random walk Sn = X1 + ...+Xn (n ≥ 1),
where Xn are arbitrary independent identically distributed (i.i.d.) random vari-
ables with mean zero and finite variance σ2 > 0, was obtained by Le’vy (1925):
n−1/2(X1+...+Xn) converges in distribution to the normal distributionN(0, σ2)
with mean zero and variance σ2, as n → ∞. In physical terms, this result says
the following: if time and length are rescaled so that in one unit of rescaled time
there are a large number n of i.i.d. displacements of small rescaled lengths of
order 1/

√
n, then the random walk displacements over a period of time t will ap-

pear as Gaussian with mean zero and variance tσ2, the increments over disjoint
intervals being independent. That such a Gaussian process exists with contin-
uous sample paths was proved rigorously by N.Wiener in 1923. This process is
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called the Brownian motion, following its implicit use by A. Einstein in 1905-6
to describe the kinetic motion of colloidal molecules in a liquid, experimentally
observed earlier by the botanist R. Brown. Interestingly, even before Einstein,
Bachelier (1900) described the random movements of stocks by this Gaussian
process. The statement that the rescaled random walk Sn(n = 0, 1, 2, ...) con-
verges in distribution to Brownian motion was proved rigorously by M. Donsker
in 1951, and this result is known as the functional central limit theorem (FCLT ).
Both theCLT and the FCLT extend to arbitrary dimensions d.

As consequences of the FCLT, one can derive many asymptotic results for the
simple symmetric random walk given by the corresponding result for the limiting
Brownian motion. Conversely, by evaluating combinatorially some probability
associated with the random walk, one may derive the corresponding probability
for the Brownian motion. A Brownian motion with variance parameter σ2 = 1
is called a standard Brownian motion, and denoted {Bt : t ≥ 0} below.

Example 2 (Boundary hitting probability of Brownian motion). Let c ≤
x ≤ d be arbitrary reals. Then, using the corresponding result for the scaled
random walk, one obtains

P ({Bt : t ≥ 0} reaches c before d | B0 = x) = (d− x)/(d− c). (3)

Example 3 (Arcsine law). Let U denote the amount of time in [0, 1] the
Brownian motion spends above zero, i.e., U = Lebesgue measure of the set
{t : 0 ≤ t ≤ 1 : Bt > 0}, given B0 = 0. Consider the polygonal path of the
simple symmetric random walk Sj(j = 0, 1, ...n), starting at zero. By combina-
torial arguments, such as the reflection principle, one can calculate exactly the
proportion of times the polygonal path lies above zero and, by the FCLT, this
yields

P (U ≤ x) = (2/π)sin−1
√
x (0 ≤ x ≤ 1). (4)
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1Reprinted with permission from Lovric, Miodrag (2011), International Encyclopedia of
Statistical Science. Heidelberg: Springer Science+Business Media, LLC
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