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QL Estimation for Independent Data. For i = 1, . . . ,K, let Yi denote the
response variable for the ith individual, and xi = (xi1, . . . , xiv , . . . , xip)

′ be the
associated p−dimensional covariate vector. Also, let β be the p−dimensional
vector of regression effects of xi on yi. Further suppose that the responses are
collected from K independent individuals. It is understandable that if the prob-
ability distribution of Yi is not known, then one can not use the well known
likelihood approach to estimate the underlying regression parameter β. Next
suppose that only two moments of the data, that is, the mean and the variance
functions of the response variable Yi for all i = 1, . . . ,K, are known, and for a
known functional form a(·), these moments are given by

E[Yi] = a′(θi) and var[Yi] = a′′(θi), (1)

where for a link function h(·), θi = h(x′

iβ), and a′(θi) and a′′(θi) are the first
and second order derivatives of a(θi), respectively, with respect to θi. For the
estimation of the regression parameter vector β under this independence set up,
Wedderburn (1974) (see also McCullagh (1983)) proposed to solve the so-called
quasi-likelihood (QL) estimating equation given by

K
∑

i=1

[
∂a′(θi)

∂β

(yi − a′(θi))

a′′(θi)
] = 0. (2)

Let β̂QL be the QL estimator of β obtained from (2). It is known that this
estimator is consistent and highly efficient. In fact, for Poisson and binary data,
for example, β̂QL is equivalent to the maximum likelihood (ML) estimator and
hence it turns out to be an optimal estimator.

Illustration for the Poisson case: For the Poisson data, one uses

a(θi) = exp(θi) (3)

with identity link function h(·), that is, θi = x′

iβ. This gives the mean and the
variance functions as

var(Yi) = a′′(θi) = E(Yi) = a′(θi) = µi (say) = exp(x′

iβ),

yielding by (2), the QL estimating equation for β as

K
∑

i=1

xi(yi − µi) = 0. (4)

Note that as the Poisson density is given by f(yi|xi) =
1
yi!

exp[yilog(µi) − µi],

with µi = exp(θi) = exp(x′

iβ), it follows that the log likelihood function of β has
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the form logL(β) = −
∑K

i=1 log(yi!)+
∑K

i=1[yiθi− a(θi)], yielding the likelihood
equation for β as

∂logL

∂β
=

K
∑

i=1

[yi − a′(θi)]
∂θi
∂β

=

K
∑

i=1

xi(yi − µi) = 0, (5)

which is the same as the QL estimating equation (4). Thus, if the likelihood
function were known, then the ML estimate of β would be the same as the QL
estimate β̂QL.

Illustration for the binary case: For the binary data, one uses

a′(θi) =
exp(θi)

1 + exp(θi)
= µi and a′′(θi) = µi(1− µi), (6)

with θi = x′

iβ. The QL estimating equation (2) for the binary data, however,
provides the same formula (4) as in the Poisson case, except that now for the

binary case µi =
exp(θi)

1+exp(θi)
, whereas for the Poisson case µi = exp(θi).

As far as the ML estimation for the binary case is concerned, one first writes
the binary density given by f(yi|xi) = µi

yi(1−µi)
1−yi . Next by writing the log

likelihood function as logL(β) =
∑K

i=1 yiµi+
∑K

i=1(1−yi)(1−µi), one obtains the

same likelihood estimating equation as in (5), except that here µi =
exp(x′

iβ)
1+exp(x′

i
β) ,

under the binary model. Since the QL estimating equation (4) is the same as
the ML estimating equation (5), it then follows that the ML and QL estimates
for β would also be the same for the binary data.

GQL Estimation: A Generalization of the QL Estimation to the Cor-
related Data.

As opposed to the independence set up, we now consider yi as a vector of T
repeated binary or count responses, collected from the i−th individual, for all
i = 1, . . . ,K. Let yi = (yi1, . . . , yit, . . . , yiT )

′, where yit represents the response
recorded at time t for the ith individual. Also, let xit = (xit1, . . . , xitv , . . . , xitp)

′

be the p−dimensional covariate vector corresponding to the scalar yit, and β
be the p−dimensional regression effects of xit on yit for all i = 1, . . . ,K, and
all t = 1, . . . , T. Suppose that µit and σitt be the mean and the variance of Yit,
that is µit = E[Yit] and var[Yit] = σitt. Note that both µit and σitt are functions
of β. But, when the variance is a function of mean, it is sufficient to estimate
β involved in the mean function only, by treating β involved in the variance
function to be known. Further note that since the T repeated responses of an
individual are likely to correlated, the estimate of β to be obtained by ignoring
the correlations, that is, the solution of the independence assumption based QL
estimating equation

K
∑

i=1

T
∑

t=1

[
∂µit

∂β

(yi − µit)

σitt

] = 0, (7)
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for β, will be consistent but inefficient. As a remedy to this inefficient estimation
problem, Sutradhar (2003) has proposed a generalization of the QL estimation
approach, where β is now obtained by solving the GQL estimating equation
given by

K
∑

i=1

∂µ′

i

∂β
Σi

−1(ρ)(yi − µi) = 0, (8)

where µi = (µi1, . . . , µit, . . . , µiT )
′ is the mean vector of Yi, and Σi(ρ) is the

covariance matrix of Yi that can be expressed as Σi(ρ) = A
1

2

i Ci(ρ)A
1

2

i , with
Ai = diag[σi11, . . . , σitt, . . . , σiTT ] and Ci(ρ) as the correlation matrix of Yi, ρ
being a correlation index parameter.

Note that the use of the GQL estimating equation (8) requires the structure
of the correlation matrix Ci(ρ) to be known, which is, however, unknown in
practice. To overcome this difficulty, Sutradhar (2003) has suggested a general
stationary auto-correlation structure given by

Ci(ρ) =













1 ρ1 ρ2 · · · ρT−1

ρ1 1 ρ1 · · · ρT−2

...
...

...
...

ρT−1 ρT−2 ρT−3 · · · 1













, (9)

(see also Sutradhar and Das (1999, Section 3)), for all i = 1, . . . ,K, where for
ℓ = 1, . . . , T−1, ρℓ represents the lag ℓ auto-correlation. As far as the estimation
of the lag correlations is concerned, they may be consistently estimated by using
the well known method of moments. For ℓ = |u− t|, u 6= t, u, t = 1, . . . , T , the
moment estimator for the autocorrelation of lag ℓ, ρℓ, has the formula

ρ̂ℓ =

∑K

i=1

∑T−ℓ

t=1 ỹitỹi,t+ℓ/K(T − ℓ)
∑K

i=1

∑T
t=1 ỹ

2
it/KT

, (10)

(Sutradhar and Kovacevic (2000, eqn. (2.18), Sutradhar (2003)), where ỹit is

the standardized residual, defined as ỹit = (yit − µit)/{σitt}
1

2 .
The GQL estimating equation (8) for β and the moment estimate of ρℓ by

(10) are solved iteratively until convergence. The final estimate of β obtained
from this iterative process is referred to as the GQL estimate of β, and may
be denoted by β̂GQL. This estimator β̂GQL is consistent for β and also highly
efficient, the ML estimator being fully efficient which is however impossible or
extremely complex to obtain in the correlated data set up.

With regard to the generality of the stationary auto-correlation matrix Ci(ρ)
in (9), one may show that this matrix, in fact, represents the correlations of
many stationary dynamic such as stationary auto-regressive order 1 (AR(1)),
stationary moving average order 1 (MA(1)), and stationary equi-correlations
(EQC) models. For example, consider the stationary AR(1) model given by

yit = ρ ∗ yi,t−1 + dit, (11)
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Table 1. A class of stationary correlation models for longitudinal count data
and basic properties.

Model Dynamic relationship Mean-variance
& Correlations

AR(1) yit = ρ ∗ yi,t−1 + dit, t = 2, . . . E[Yit] = µi·

yi1 ∼ Poi(µi·) var[Yit] = µi·

dit ∼ P (µi·(1− ρ)), t = 2, . . . corr[Yit, Yi,t+ℓ] = ρℓ
= ρℓ

MA(1) yit = ρ ∗ di,t−1 + dit, t = 2, . . . E[Yit] = µi·

yi1 = di1 ∼ Poi(µi·/(1 + ρ)) var[Yit] = µi·

dit ∼ P (µi·/(1 + ρ)), t = 2, . . . corr[Yit, Yi,t+ℓ] = ρℓ

=

{ ρ
1+ρ

for ℓ = 1

0 otherwise,
EQC yit = ρ ∗ yi1 + dit, t = 2, . . . E[Yit] = µi·

yi1 ∼ Poi(µi·) var[Yit] = µi·

dit ∼ P (µi·(1− ρ)), t = 2, . . . corr[Yit, Yi,t+ℓ] = ρℓ
= ρ

(McKenzie (1988), Sutradhar (2003)) where it is assumed that for given yi,t−1,
ρ ∗ yi,t−1 denotes the so-called binomial thinning operation (McKenzie, 1988).
That is,

ρ ∗ yi,t−1 =

yi,t−1
∑

j=1

bj(ρ) = zi,t−1, say, (12)

with Pr[bj(ρ) = 1] = ρ and Pr[bj(ρ) = 0] = 1 − ρ. Furthermore, it is assumed
in (11) that yi1 follows the Poisson distribution with mean parameter µi·, that
is, yi1 ∼ Poi(µi·), where µi· = exp(x′

i·β) with stationary covariate vector xi·

such that xit = xi· for all t = 1, . . . , T. Further, in (11), dit ∼ P (µi·(1 − ρ))
and is independent of zi,t−1. This model in (11) yields the mean, variance and
auto-correlations of the data as shown in Table 1. The Table 1 also contains
the MA(1) and EQC models and their basic properties including the correlation
structures.

It is clear from Table 1 that the correlation structures for all three pro-
cesses can be represented by Ci(ρ) in (9). By following Qaqish (2003), one may
write similar but different dynamic models for the repeated binary data, with
their correlation structures represented by Ci(ρ). Thus, if the count or binary
data follow this type of auto-correlations model, one may then certainly esti-
mate the regression vector consistently and efficiently by solving the general
auto-correlations matrix based GQL estimating equation (8), where the lag cor-
relations are estimated by (10) consistently.

[* Reprinted with permission from Lovric, Miodrag (2011), International Ency-
clopedia of Statistical Science. Heidelberg: Springer Science & Business Media,
LLC]
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