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At the heart of statistics lie the ideas of statistical inference. Methods of
statistical inference enable the investigator to argue from the particular obser-
vations in a sample to the general case. In contrast to logical deductions made
from the general case to the specific case, a statistical inference can sometimes
be incorrect. Nevertheless, one of the great intellectual advances of the twen-
tieth century is the realization that strong scientific evidence can be developed
on the basis of many, highly variable, observations.

The subject of statistical inference extends well beyond statistics’ historical
purposes of describing and displaying data. It deals with collecting informative
data, interpreting these data, and drawing conclusions. Statistical inference
includes all processes of acquiring knowledge that involve fact finding through
the collection and examination of data. These processes are as diverse as opinion
polls, agricultural field trials, clinical trials of new medicines, and the studying
of properties of exotic new materials. As a consequence, statistical inference has
permeated all fields of human endeavor in which the evaluation of information
must be grounded in data-based evidence.

A few characteristics are common to all studies involving fact finding through
the collection and interpretation of data. First, in order to acquire new knowl-
edge, relevant data must be collected. Second, some variability is unavoidable
even when observations are made under the same or very similar conditions.
The third, which sets the stage for statistical inference, is that access to a com-
plete set of data is either not feasible from a practical standpoint or is physically
impossible to obtain.

To more fully describe statistical inference, it is necessary to introduce sev-
eral key terminologies and concepts. The first step in making a statistical in-
ference is to model the population(s) by a probability distribution which has a
numerical feature of interest called a parameter. The problem of statistical in-
ference arises once we want to make generalizations about the population when
only a sample is available.

A statistic, based on a sample, must serve as the source of information
about a parameter. Three salient points guide the development of procedures
for statistical inference

1. Because a sample is only part of the population, the numerical value of
the statistic will not be the exact value of the parameter.

1Based on an article from Lovric, Miodrag (2011), International Encyclopedia of Statistical
Science. Heidelberg: Springer Science +Business Media, LLC
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2. The observed value of the statistic depends on the particular sample se-
lected.

3. Some variability in the values of a statistic, over different samples, is
unavoidable.

The two main classes of inference problems are estimation of parameter(s)
and testing hypotheses about the value of the parameter(s). The first class con-
sists of point estimators, a single number estimate of the value of the parameter,
and interval estimates. Typically, the interval estimate specifies an interval of
plausible values for the parameter but the subclass also includes prediction in-
tervals for future observations. A test of hypotheses provides a yes/no answer
as to whether the parameter lies in a specified region of values.

Because statistical inferences are based on a sample, they will sometimes
be in error. Because the actual value of the parameter is unknown, a test of
hypotheses may yield the wrong yes/no answer and the interval of plausible
values may not contain the true value of the parameter.

Statistical inferences, or generalizations from the sample to the population,
are founded on an understanding of the manner in which variation in the popu-
lation is transmitted, via sampling, to variation in a statistic. Most introductory
texts ( see Johnson and Bhattacharyya [11], Johnson, Miller, and Freund [12] )
give expanded discussions of these topics.

There are two primary approaches, frequentist and Bayesian, for making
statistical inferences. Both are based on the likelihood but their frameworks are
entirely different.

The frequentist treats parameters as fixed but unknown quantities in the
distribution which governs variation in the sample. Then, the frequentist tries to
protect against errors in inference by controlling the probabilities of these errors.
The long-run relative frequency interpretation of probability then guarantees
that if the experiment is repeated many times only a small proportion of times
will produce incorrect inferences. Most importantly, using this approach in
many different problems keeps the overall proportion of errors small.

To illustrate a frequentist approach to confidence intervals and tests of hy-
potheses, we consider the case were the observations are a random sample of
size n from a normal distribution having mean µ and standard deviation σ. Let
X1, ..., Xn be independent observations from that distribution, X =

∑
n

i−1
Xi/n,

and S2 =
∑

n

i=1
(Xi −X)2 /(n− 1). Then, using the fact that the sampling dis-

tribution of
√
n (X − µ)/S = T is the t−distribution with n − 1 degrees of

freedom

1− α = P [−tn−1(α/2) <

√
n (X − µ)

S
< tn−1(α/2) ]

where tn−1(α/2) is the upper 100α/2 percentile of that t−distribution.
Rearranging the terms, we obtain the probability statement

1− α = P [X − tn−1(α/2)
S√
n
< µ < X + tn−1(α/2)

S√
n
]
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which states that, prior to collecting the sample, the random interval with end
points X± tn−1(α/2)S/

√
n will cover the unknown, but fixed, µ with the speci-

fied probability 1−α. After the sample is collected, x, s and the endpoints of the
interval are calculated. The interval is now fixed and µ is fixed but unknown.
Instead of probability we say that the resulting interval is a 100(1− α) percent
confidence interval for µ.

To test the null hypothesis that the mean has a specified value µ0 , we
consider the test statistic

√
n (X − µ0)/S which has the t− distribution with

n−1 when the null hypothesis prevails. When the alternative hypothesis asserts
that µ is different from µ0 , the null hypothesis should be rejected when | √n (X−
µ0)/S | ≥ tn−1(α/2). Before the sample is collected, with specified probability
α, the test will falsely fail to reject the null hypothesis.

Frequentists are divided on the problem of testing hypotheses. Some statis-
ticians ( see Cox [4] ) follow R. A. Fisher and perform significance tests where
the decision to reject a null hypothesis is based on values of the statistic that
are extreme in directions considered important by subject matter interest. R.
A. Fisher [7] also suggests using fudicial probabilities to interpret significance
tests but this is no longer a popular approach.

It is more common to take a Neyman-Pearson approach where an alternative

hypothesis is clearly specified together with the corresponding distributions for
the statistic. Power, the probability of rejecting the null hypothesis when it
is false, can then be optimized. A definitive account of the Neyman-Pearson
theory of testing hypotheses is given by Lehmann and Ramono [14] and that
for the theory of estimation by Lehmann and Casella [13].

In contrast, Bayesians consider unknown parameters to be random variables
and, prior to sampling, assign a prior distribution for the parameters. After
the data are obtained, the Bayesian multiplies the likelihood by the prior dis-
tribution to obtain the posterior distribution of the parameter, after a suitable
normalization. Depending on the goal of the investigation, a pertinent feature
or features of the posterior distribution are used to make inferences. The mean
is often a suitable point estimator and a suitable region of highest posterior
density gives an interval of plausible values.

More generally, under a Bayesian approach, a distribution is given for any-
thing that is unknown or uncertain. Once the data become known, the prior
distribution is updated using the appropriate laws of conditional probability. See
Box and Tiao[1] and Gelman, Carlin and Rubin [8] for discussions of Bayesian
approaches to statistical inference.

A second phase of statistical inference, model checking, is required for both
frequentist and Bayesian approaches. Are the data consonant with the model
or must the model be modified in some way? Checks on the model are often
subjective and rely on graphical diagnostics.

D. R. Cox [4] gives an excellent introduction to statistical inference where
he also compares Bayesian and frequentist approaches and highlights many of
the important issues underlying their differences.

The advent of designed experiments has greatly enhanced the opportuni-
ties for making statistical inferences about differences between methods, drugs,
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or procedures. R. A. Fisher pioneered the development of both the design of
experiments and also their analysis which he called the Analysis of Variance
(ANOVA). Box, Hunter, and Hunter [2] and Seber and Lee [17], together with
the material in the references therein, provide comprehensive coverage.

When one or more variables may influence the expected value of the response,
and these variables can be controlled by the experimenter, the selection of values
used in the experiment can often be chosen in clever ways. We use the term
factor for a variable and levels for its values. In addition to the individual factors,
the response may depend on terms such as the product of two factors or other
combination of the factors. The expected value of the response is expressed as
a function of these terms and parameters. In the classical linear models setting,
the function is linear in the parameters and the error is additive. These errors
are assumed to be independent and normally distributed with mean zero and the
same variance for all runs. This setting, which encompasses all linear regression
analysis, gives rise to the normal theory sampling distributions; the chi square,
F , normal and t distributions.

The two simplest designs are the matched pairs design and the two samples
design. Suppose n experimental units are available. When the two treatments
can be assigned by the experimenter, the experimenter should randomly select
n1 of them to receive treatment 1 and then treatment 2 is applied to the other
n − n1 = n2 units. After making a list, or physically arranging the units in or-
der, n1 different random numbers between 1 and n, inclusive, can be generated.
The corresponding experimental units receive treatment 1.

In the matched pairs design, the experimental units are paired according to
some observable characteristic that is expected to influence the response. In
each pair, treatment 1 is applied to one unit and treatment 2 to the other unit.
The assignment of treatments within a pair should be done randomly. A coin
could be flipped, for each pair, with heads corresponding to the assignment of
treatment 1 to the first unit in that pair.

Both the two samples design and the matched pairs design are examples of
randomized designs. R. A. Fisher [7] introduced the idea of randomized tests in
his famous example of the tea tasting lady who claimed she could tell if milk
or the tea infusion were added first to her cup. A small example, employing
the two samples design, illustrates the concepts. In order to compare two cake
recipes, or treatments, cakes are made using the two different recipes. Three
of the seven participants are randomly assigned to receive treatment 1, and the
other four receive treatment 2. Suppose the responses, ratings of the taste, are

Treatment 1 : 11 13 9 x = 11
Treatment 2 : 8 7 12 5 y = 8

Randomization tests compare the two treatments by calculating a test statis-
tic. Here we use the difference of means 11 − 8 = 3. Equivalently we could use
the mean of the first sample or a slightly modified version of the t statistic.

The observed value of the test statistic is compared, not with a tabled dis-
tribution, but with the values of test statistic evaluated over all permutations
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of the data. As a consequence, randomization tests are also called permutation

tests.
Here the first person in the treatment 1 group can be selected in 7 ways, the

second in 6 ways, and the third in 5 ways. The succession of choices can be done
in 7 × 6 × 5 = 210 ways but there are 3 × 2 × 1 = 6 different orders that lead
to the same set of three people. Dividing the number of permutations 210 by
6, we obtain 35 different assignments of participants to treatment 1. If there is
no difference in treatments, these 35 re-assignments should all be comparable.

One such case results in

Treatment 1 : 11 13 12 x = 12
Treatment 2 : 8 7 9 5 y = 7.25

and the corresponding difference in means is 12− 7.25 = 4.75. After calculating
all 35 values we find that this last case and the observed one give the largest dif-
ferences. The one-sided randomization test, for showing that the first treatment
has higher average response, would then have P-value 2/35 = 0.057.

In applications where there are far to many cases to evaluate to obtain the
complete randomization distribution, it is often necessary to take a Monte Carlo
approach. By randomly selecting, say, 10,000 of the possible permutations and
evaluating the statistic for each case, we usually obtain a very good approxima-
tion to the randomization distribution.

We emphasize that randomization tests (i) do not require random samples
and (ii) make no assumptions about normality. Instead, they rely on the ran-
domization of treatments to deduce whether or not there is a difference in treat-
ments. Also, randomized designs allow for some inferences to be based on firmer
grounds than observational studies where the two groups are already formed and
the assignment of treatments is not possible.

Edgington and Onghena [5] treat many additional randomization tests. Rank
tests are special cases of permutation tests where the responses are replaced by
their ranks. ( see Hajek and Sidak [9] ).

The same ideas leading to randomized designs also provide the underpinning
for the traditional approach to inference in sample surveys. It is the random
selection of individuals, or random selection within subgroups or strata, that
permits inferences to made about the population. There is some difference
here because the population consists of a finite number of units. When all
subsets of size n have the same probability of being selected, the sample is
called a random sample and sampling distributions of means and proportions
can be determined from the selection procedure. The random selection is still
paramount when sampling from strata or using multiple stage sampling. Lohr
[15] gives a very readable introduction and the classical text by Cochran [3]
presents the statistical theory of sample surveys.

Bootstrap sampling (see Efron and Tibshirani [6] ) provides another alterna-
tive for obtaining a reference distribution with which to compare the observed
value of statistic or even a distribution on which to base interval estimates. Yet
another approach is using the empirical likelihood as discussed in Owen [16] .
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Much of the modern research on methods of inference concerns infinite di-
mensional parameters. Examples include function estimation where the function
may be a nonparametric regression function, cumulative distribution function,
or hazard rate. Additionally, considerable research activity has been motivated
by genomic applications where the number of variables far exceeds the sample
size.

Major advances are also being made in developing computer intensive meth-
ods for statistical learning. These include techniques with applications to the
cross-disciplinary areas of data mining and artificial intelligence. See Hastie,
Tibshirani and Friedman [10] for a good summary of statistical learning tech-
niques.
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