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Random field X(t) on D ⊂ Rn (i.e. t ∈ D ⊂ Rn) is a function whose values
are random variables for any t ∈ D. The dimension of the coordinate is usually
in the range from one to four, but any n > 0 is possible. A one-dimensional
random field is usually called a stochastic process. The term ’random field’ is
used to stress that the dimension of the coordinate is higher than one. Random
fields in two and three dimensions are encountered in a wide range of sciences
and especially in the earth sciences such as hydrology, agriculture, and geology.
Random fields where t is a position in space-time are studied in turbulence
theory and in meteorology.

Random field X(t) is described by its finite-dimensional (cumulative) distri-
butions

Ft1,...,tk(x1, . . . , xk) = P{X(t1) < x1, . . . , X(tk) < xk}, k = 1, 2, . . .

The cumulative distribution functions are by definition left-continuous and non-
decreasing. Two requirements on the finite-dimensional distributions must be
satisfied. The symmetry condition

Ft1,...,tk(x1, . . . , xk) = Ftπ1,...,tπk
(xπ1, . . . , xπk),

π is a permutation of the index set {1, . . . , k}. The compatibility condition

Ft1,...,tk−1
(x1, . . . , xk−1) = Ft1,...,tk(x1, . . . , xk−1,∞).

Kolmogorov Existence Theorem states: If a system of finite-dimensional dis-
tributions Ft1,...,tk(x1, . . . , xk), k = 1, 2, . . . satisfies the symmetry and compat-
ibility conditions, then there exists on some probability space a random field
X(t), t ∈ D, having Ft1,...,tk(x1, . . . , xk), k = 1, 2, . . . as its finite-dimensional
distributions.

The expectation (mean value) of a random field is by definition the Stieltjes
integral

m(t) = EX(t) =

∫

R1

xdFt(x).

The (auto-)covariance function is also expressed as the Stieltjes integral

B(t, s) = E(X(t)X(s))−m(t)m(s) =

∫∫

R2

xydFt,s(x, y)−m(t)m(s),
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whereas the variance is σ2(t) = B(t, t).

Gaussian random fields play an important role for several reasons: the spec-
ification of their finite-dimensional distributions is simple, they are reasonable
models for many natural phenomenons, and their estimation and inference are
simple.

A Gaussian random field is a random field where all the finite-dimensional
distributions are multivariate normal distributions. Since multivariate normal
distributions are completely specified by expectations and covariances, it suffices
to specify m(t) and B(t, s) in such a way that the symmetry condition and the
compatibility condition hold true. The expectation can be arbitrarily chosen,
but the covariance function must be positive definite to ensure the existence of
all finite-dimensional distributions (Adler and Taylor 2007; Piterbarg 1996)

Wiener sheet (Brownian sheet) is a Gaussian random fieldW (t), t = (t1, t2) ∈
R2

+ with EW (t) = 0 and correlation function

B(t, s) = E(X(t)X(s)) = min{s1, t1}min{s2, t2}.

Analogously, n-parametric Wiener process is a Gaussian random field W (t), t ∈
Rn

+ with EW (t) = 0 and correlation function B(t, s) =
∏n

i=1 min(si, ti). Mul-
tiparametric Wiener process W (t) has independent homogeneous increments.
Generalized derivative of multiparametric Wiener process W (t) is Gaussian

white noise process on Rn
+ (Chung and Walsh 2005; Khoshnevisan 2002).

Poisson random fields are also reasonable models for many natural phe-
nomenon. A Poisson random field is an integer-valued (point) random field
where the (random) amount of points which belong to a bounded set from the
range of values of the field has a Poisson distribution and the random amounts
of points which belong to nonoverlapping sets are mutually independent (Ker-
stan et al. 1974). Point-valued random fields (Poisson random fields, Cox
random fields, Poisson cluster random fields, Markov point random fields, ho-
mogeneous and isotropic point random fields, marked point random fields) are
appropriate mathematical models for geostatistical data. A mathematically ele-
gant approach to analysis of point-valued random fields (spatial point processes)
is proposed by Noel A.C. Cressie (Cressie 1991).

Markov random field X(t), t ∈ D ⊂ Rn, is a random function which has the
Markov property with respect to a fixed system of ordered triples (S1,Γ, S2) of
nonoverlapping subsets from the domain of definition D. The Markov property
means that for any measurable set B from the range of values of the function
X(t) and every t0 ∈ S2 the following equality holds true

P{X(t0) ∈ B|X(t), t ∈ S1 ∪ Γ} = P{X(t0) ∈ B|X(t), t ∈ Γ}.

This means that the future S2 does not depend on the past S1 when the present
Γ is given. Let, for example, D = Rn, {Γ} be a family of all spheres in Rn, S1
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be the interior of Γ, S2 be the exterior of Γ. A homogeneous and isotropic Gaus-
sian random field X(t), t ∈ Rn, has the Markov property with respect to the
ordered triples (S1,Γ, S2) if and only if X(t) = ξ, where ξ is a random variable.
Nontrivial examples of homogeneous and isotropic Markov random fields can be
constructed when consider the generalized random fields. Markov random fields
are completely described in the class of homogeneous Gaussian random fields on
Zn, in the class of multidimensional homogeneous generalized Gaussian random
fields on the space C∞

0 (Rm) and the class of multidimensional homogeneous and
isotropic generalized Gaussian random fields (Glimm and Jaffe 1981; Rozanov
1982; Yadrenko 1983).

Gibbs random fields form a class of random fields that have extensive appli-
cations in solutions of problems in statistical physics. The distribution functions
of these fields are determined by Gibbs distribution (Malyshev and Minlos 1985).

Homogeneous random field in the strict sense is a real valued random function
X(t), t ∈ Rn (or t ∈ Zn), where all its finite-dimensional distributions are
invariant under arbitrary translations, i.e.

Ft1+s,...,tk+s(x1, . . . , xk) = Ft1,...,tk(x1, . . . , xk)∀s ∈ R
n.

Homogeneous random field in the wide sense is a real valued random function
X(t), t ∈ Rn (t ∈ Zn), E|X(t)|2 < +∞, where EX(t) = m = const and the
correlation function EX(t)X(s) = B(t − s) depends on the difference t − s of
coordinates of points t and s.

Homogeneous random field X(t), t ∈ Rn, EX(t) = 0, E|X(t)|2 < +∞, and
its correlation function B(t) = EX(t+s)X(s) admit the spectral representations

X(t) =

∫

· · ·

∫

exp

{

n
∑

k=1

tkλk

}

Z(dλ),

B(t) =

∫

· · ·

∫

exp

{

n
∑

k=1

tkλk

}

F (dλ),

where F (dλ) is a measure on the Borel σ-algebra Bn of sets from Rn, Z(dλ) is
an orthogonal random measure on Bn such that E(Z(S1)Z(S2)) = F (S1 ∩ S2).
The integration range is Rn in the case of continuous time random field X(t),
t ∈ Rn and [−π, π]n in the case of discrete time random field X(t), t ∈ Zn. In
the case where the spectral representation of the correlation function is of the
form

B(t) =

∫

· · ·

∫

exp

{

n
∑

k=1

tkλk

}

f(λ)dλ,

the function f(λ) is called spectral density of the field X(t). Based on these
spectral representations we can prove, for example, the law of large numbers for
random field X(t):
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The mean square limit

lim
N→∞

1

(2N + 1)n

∑

|ti|≤N,i=1,...,n

X(t) = Z{0}.

This limit is equal to EX(t) = 0 if and only if E|Z{0}|2 = F{0}. In the case
where F{0} = 0 and

∫ π

−π

· · ·

∫ π

−π

n
∏

i=1

log

∣

∣

∣

∣

log
1

|λi|

∣

∣

∣

∣

F (dλ) < +∞,

the strong law of large numbers holds true for the random field X(t).

Isotropic random field is a real valued random function X(t), t ∈ Rn,
E|X(t)|2 < +∞, where the expectation and the correlation function have prop-
erties: EX(t) = EX(gt) and EX(t)X(s) = EX(gt)X(gs) for all rotations g
around the origin of coordinates. An isotropic random field X(t) admits the
decomposition

X(t) =

∞
∑

m=0

h(m,n)
∑

l=1

X l
m(r)Sl

m(θ1, θ2, . . . , θn−2, ϕ),

where (r, θ1, θ2, . . . , θn−2, ϕ) are spherical coordinates of the point t ∈ Rn,
Sl
m(θ1, θ2, . . . , θn−2, ϕ) are spherical harmonics of the degree m, h(m,n) is the

amount of such harmonics, X l
m(r) are uncorrelated stochastic processes such

that E(X l
m(r)X l1

m1
(s)) = bm(r, s)δm1

m δl1l , where δji is the Kronecker symbol,
bm(r, s) is a sequence of positive definite kernels such that

∑∞
m=0 h(m,n)bm(r, s) <

+∞, bm(0, s) = 0,m 6= 0.
Isotropic random field X(t), t ∈ R2, on the plane admits the decomposition

X(r, ϕ) =

∞
∑

m=0

{

X1
m(r) cos(mϕ) +X2

m(r) sin(mϕ)
}

.

The class of isotropic random fields includes homogeneous and isotropic random
fields, multiparametric Brownian motion processes.

Homogeneous and isotropic random field is a real valued random function
X(t), t ∈ Rn, E|X(t)|2 < +∞, where the expectation EX(t) = c = const and
the correlation function EX(t)X(s) = B(|t− s|) depends on the distance |t− s|
between points t and s. Homogeneous and isotropic random field X(t) and its
correlation function B(r) admit the spectral representations (Yadrenko 1983)

X(t) = cn

∞
∑

m=0

h(m,n)
∑

l=1

Sl
m(θ1, θ2, . . . , θn−2, ϕ)

∫ ∞

0

Jm+(n−2)/2(rλ)

(rλ)(n−2)/2
Z l
m(dλ),

B(r) =

∫ ∞

0

Yn(rλ)dΦ(λ),
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where

Yn(x) = 2(n−2)/2Γ
(n

2

) J(n−2)/2(x)

x(n−2)/2

is a spherical Bessel function, Φ(λ) is a bounded nondecreasing function called
the spectral function the field X(t), Z l

m(dλ) are random measures with orthogo-
nal values such that E(Z l

m(S1)Z
l1
m1

(S2)) = δm1

m δl1l Φ(S1∩S2), c
2
n = 2n−1Γ(n/2)πn/2.

Homogeneous and isotropic random field X(t), t ∈ R2, on the plane admits the
spectral representation

X(t, ϕ) =

∞
∑

m=0

cos(mϕ)Ym(rλ)Z1
m(dλ) +

∞
∑

m=1

sin(mϕ)Ym(rλ)Z2
m(dλ).

These spectral decompositions of random fields form a power tool for solution
of statistical problems for random fields such as extrapolation, interpolation,
filtering, estimation of parameters of the distribution.

Estimation problems for random fields X(t), t ∈ Rn (estimation of the un-
known mathematical expectation, estimation of the correlation function, esti-
mation of regression parameters, extrapolation, interpolation, filtering, etc) are
similar to the corresponding problems for stochastic processes (random fields
of dimension 1). Complications usually are caused by the form of domain of
points {tj} = D ⊂ Rn, where observations {X(tj)} are given and the dimension
of the field. The complications are overcoming by considering specific domains
of observations and particular classes of random fields.

Let in the domain D ⊂ Rn there are given observations of the random field

X(t) =

q
∑

i=1

θigi(t) + Y (t),

where gi(t), i = 1, . . . , q, are known non-random functions, θi, i = 1, . . . , q, are
unknown parameters, Y (t) is a random field with EY (t) = 0. The problem is
to estimate the regression parameters θi, i = 1, . . . , q. This problem includes
as a particular case (q = 1, g1(t) = 1) the problem of estimation of the un-
known mathematical expectation. Linear unbiased least squares estimates of
the regression parameters can be found by solving the corresponding linear al-
gebraic equations or linear integral equations determined with the help of the
correlation function. For the class of isotropic random fields formulas for esti-
mates of the regression parameters are proposed by M. I. Yadrenko (Yadrenko

1983). For example, the estimate θ̂ of the unknown mathematical expectation
θ of an isotropic random field X(t) = X(r, u) from observations on the sphere
Sn(r) = {x ∈ Rn, ‖x‖ = r} is of the form

θ̂ =
1

ωn

∫

Sn(r)

X(r, u)mn(du), n ≥ 2,

where mn(du) is the Lebesgue measure on the sphere Sn(r), ωn is the square of
the surface of the sphere, (r, u) are spherical coordinates of the point t ∈ Rn.
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Consider the extrapolation problem. 1. Let observations of the mean-square
continuous homogeneous and isotropic random field X(t), t ∈ Rn, are given on
the sphere Sn(r) = {x ∈ Rn, ‖x‖ = r}. The problem is to determine the optimal
mean-square linear estimate X̂(s) of the unknown value X(s), s 6∈ Sn(r), of the
random field. It follows from the spectral representation of the field that this
estimate is of the form

X̂(s) =
∞
∑

m=0

h(m,n)
∑

l=1

clm(s)

∫ ∞

0

Jm+(n−2)/2(rλ)

(rλ)(n−2)/2
Z l
m(dλ),

where coefficients clm(s) are determined by a special algorithm (Yadrenko 1983).
For practical purposes it is more convenient to have a formula where observations
X(t), t ∈ Sn(r), are used directly. The composition theorem for spherical
harmonics gives us this opportunity. We can write

X̂(s) =

∫

Sn(r)

c(s, t)X(t)dmn(t),

where the function c(s, t) is determined by the spectral function Φ(λ) of the
field X(t) (Yadrenko 1983).
2. Let an isotropic random field X(t), t = (r, u) ∈ Rn, is observed in the sphere
VR = {x ∈ R

n, ‖x‖ ≤ R}. The optimal liner estimate X̂(s) of the unknown
value X(s), s = (ρ, v) 6∈ VR, of the field has the form

X̂(s) =

∫

VR

C(s, t)X(t)dmn(t),

C(s, t) =
∞
∑

m=0

h(m,n)
∑

l=1

clm(r)Sl
m(u),

where coefficients clm(r) are determined via special integral equations

bm(ρ, q)Sl
m(v) =

∫ R

0

bm(r, q)clm(r)rn−1dr, m = 0, 1, . . . ; l = 1, 2, . . . , h(m,n), q ∈ [0, R].

If, for example, X(t), t = (r, u), is an isotropic random field where bm(r, q) =
a|m| exp{−β|r−q|}, then it is easy to see that X̂(ρ, v) = exp{−β|ρ−R|}X(R, v), v ∈
Sn.

For methods of solutions of other estimation problems for random fields (ex-
trapolation, interpolation, filtering, etc) see Cressie (1991), Grenander (1981),
Moklyachuk (2008), Ramm (2005), Ripley (1981), Rozanov (1982), Yadrenko
(1983) and Yaglom (1987).
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