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The Significance Test Controversy

“It is very bad practice to summarise an important investigation
solely by a value of P” (Cox, 1982, page 327)

In spite of some recent changes, null hypothesis significance tests are again
conventionally used in most scientific experimental publications. According to
this publication practice, each experimental result is dichotomized: significant
vs. nonsignificant. But scientists cannot in this way find appropriate answers
to their precise questions, especially in terms of effect size evaluation. It is not
surprising that, from the outset (e.g. Boring, 1919), significance tests have been
subject to intense criticism. Their use has been explicitly denounced by the
most eminent and most experienced scientists, both on theoretical and method-
ological grounds, not to mention the sharp controversies on the very foundations
of statistical inference that opposed Fisher to Neyman and Pearson, and con-
tinue to oppose frequentists to Bayesians. In the sixties there was more and
more criticism, especially in the behavioral and social sciences, denouncing the
shortcomings of significance tests: the significance test controversy (Morrison &
Henkel, 1970).

Significance Tests Are Not a Good Scientific Practice

“All we know about the world teaches us that the effects of A and
B are always different - in some decimal place - for any A and B.
Thus asking ‘Are the effects different?’ is foolish.” (Tukey, 1991,
page 100)



In most applications, no one can seriously believe that the different treat-
ments have produced no effect: the point null hypothesis is only a straw man
and a significant result is an evidence against an hypothesis known to be false
before the data are collected, but not an evidence in favor of the alternative hy-
pothesis. It is certainly not a good scientific practice, where one is expected to
present arguments that support the hypothesis in which one is really interested.
The real problem is to obtain estimates of the sizes of the differences.

The Innumerable Misuses of Significance Tests

“The psychological literature is filled with misinterpretations of the
nature of the tests of significance.” (Bakan, in Morrison & Henkel,
1970, page 239)

Due to their inadequacy in experimental data analysis, the practice of signif-
icance tests entails considerable distortions in the designing and monitoring of
experiments. It leads to innumerable misuses in the selection and interpretation
of results. The consequence is the existence of publication biases denounced by
many authors: while non significant results are — theoretically — only statements
of ignorance, only the significant results would really deserve publication.

The evidence of distortions is the use of the symbols NS, * ** and ***
in scientific journals, as if the degree of significance was correlated with the
meaningfulness of research results. Many researchers and journal editors appear
to be “star worshippers”: see Guttman (1983), who openly attacked the fact that
some scientific journals, and Science in particular, consider the significance test
as a criterion of scientificness. A consequence of this overeliance on significant
effects is that most users of statistics overestimate the probability of replicating
a significant result.

The Considerable Difficulties Due to the Frequentist Ap-
proach

“What the use of P implies, therefore, is that a hypothesis that
may be true may be rejected because it has not predicted observable
results that have not occurred. This seems a remarkable procedure.”
(Jeffreys, 1961/1939, Section 7.2)

Since the p-value is the proportion of samples that are “at least as extreme”
as the observed data (under the null hypothesis), the rejection of the null hypoth-
esis is based on the probability of the samples that have not been observed, what
Jeffreys ironically expressed in the above terms. This mysterious and unrealistic
use of the sampling distribution for justifying null hypothesis significance tests
is for the least highly counterintuitive. This is revealed by questions frequently
asked by students and statistical users: “why one considers the probability of
samples outcomes that are more extreme than the one observed?”



Actually, due to their frequentist conception, significance tests involve con-
siderable difficulties in practice. In particular, many statistical users misinter-
pret the p-values as inverse (Bayesian) probabilities: 1-p is “the probability that
the alternative hypothesis is true.” All the attempts to rectify this misinterpre-
tation have been a loosing battle.

Significance Tests Users’ Dissatisfaction

“Neither Fisher’s null hypothesis testing nor Neyman-Pearson deci-
sion theory can answer most scientific problems.” (Gigerenzer, 2004,
page 599)

Several empirical studies emphasized the widespread existence of common
misinterpretations of significance tests among students and scientists (for a re-
view, see Lecoutre, Lecoutre & Poitevineau, 2001). Many methodology instruc-
tors who teach statistics, including professors who work in the area of statistics,
appear to share their students’ misinterpretations. Moreover, even professional
applied statisticians are not immune to misinterpretations of significance tests,
especially if the test is nonsignificant. It is hard to interpret these finding as an
individual’s lack of mastery: they reveal that significance test do not address
the questions that are of primary interest for the scientific research.

“But the primary aim of a scientific experiment is not to precipitate
decisions, but to make an appropriate adjustment in the degree to
which one accepts, or believes, the hypothesis or hypotheses being
tested.” (Rozeboom, in Morrison & Henkel, 1970, page 221)

In particular, the dichotomous significant/non significant outcome of signif-
icance tests strongly suggests binary research decisions: “reject/accept the null
hypothesis”. The “reject/accept” attitude is obviously a poor and unfortunate
decision practice.

e A statistically significant test provides no information about the departure
from the null hypothesis. When the sample is large a descriptively small depar-
ture may be significant.

e A nonsignificant test is not evidence favouring the null hypothesis. In partic-
ular, a descriptively large departure from the null hypothesis may be nonsignif-
icant if the experiment is insufficiently sensitive.

In fact, in order to interpret their data in a reasonable way, users must
resort to a more or less naive mixture of significance tests outcomes and other
information. But this is not an easy task! This leads users to make adaptative
distortions, designed to make an ill-suited tool fit their true needs. Actually,
many users explicitly appear to have a real consciousness of the stranglehold
of significance tests: in many cases they use them only because they know no
other alternative.



The Case for Confidence Intervals

On the one hand, it is not acceptable that the users of statistical inference
methods will continue using non appropriate procedures because they know no
other alternative. On the other hand, the times we’re living in at the moment
appear to be crucial. Changes in reporting experimental results are more and
more enforced within editorial policies. Most of these changes are explicitly
intended to deal with the essential question of effect sizes.

“Science is inevitably about magnitudes.” (Cohen, 1990, page 1309)

Reporting an effect size estimate is one of the first necessary steps in over-
coming the abuses of null hypothesis significance tests. It can effectively prevent
researchers from unjustified conclusions in the conflicting cases where a non-
significant result is associated with a large observed effect size. However, small
observed effect sizes are often illusorily perceived by researchers as being favor-
able to a conclusion of no effect, when they can’t in themselves be considered
as sufficient proof.

Power studies can also be seen as a handrail to avoid hasty generalizations.
However referring to statistical papers that discuss and compare procedures, a
more and more widespread opinion is that the concept of power is inappropriate
for interpreting results.

The majority trend, reinforced by editorial policies, is to advocate the use of
confidence intervals, in addition to or instead of significance tests. Consequently,
confidence intervals are more and more frequently reported, either about raw
or standardized effect sizes. However, reporting confidence intervals appears to
have very little impact on the way the authors interpret their data. Most of
them continue to focus on the statistical significance of the results. They only
wonder whether the interval includes the null hypothesis value, rather than on
the full implications of confidence intervals: the steamroller of significance tests
cannot be escaped.

“Inevitably, students (and everyone else except for statisticians) give
an inverse or Bayesian twist to frequentist measures such as confi-
dence intervals and P values.” (Berry, 1997, page 242)

Furthermore, for many reasons due to their frequentist conception, confi-
dence intervals can hardly be seen as the ultimate method. Indeed it can be
anticipated that the conceptual difficulties encountered with the frequentist con-
ception of confidence intervals will produce further dissatisfaction. In particular,
users will realize that the appealing feature of confidence intervals is the result
of a fundamental misunderstanding. As is the case with significance tests, the
frequentist interpretation of a 95% confidence interval involves a long run rep-
etition of the same experiment: in the long run 95% of computed confidence
intervals will contain the “true value” of the parameter; each interval in isola-
tion has either a 0 or 100% probability of containing it. Unfortunately treating



the data as random even after observation is so strange this “correct” interpre-
tation does not make sense for most users. Ironically it is the interpretation
in (Bayesian) terms of “a fized interval having a 95% chance of including the
true value of interest” which is the appealing feature of confidence intervals.
Moreover these incorrect natural interpretations of confidence intervals (and of
significance tests) are encouraged by most statistical instructors who tolerate
and even use them.

“It would not be scientifically sound to justify a procedure by fre-
quentist arguments and to interpret it in Bayesian terms.” (Rouanet,
in Rouanet et al., 2000, page 54)

What a paradoxical situation! We then naturally have to ask ourselves
whether the “Bayesian choice” (Robert, 2001) will not, sooner or later, be an
unavoidable alternative.

The Bayesian Choice

“At the very least, use of noninformative priors should be recognized
as being at least as objective as any other statistical techniques.”
(Berger, 1985, page 110)

Time’s up to come to a positive agreement for objective procedures of ex-
perimental data analysis that bypass the common misuses of significance tests.
This agreement should fill up its role of “an aid to judgment,” which should
not be confused with automatic acceptance tests. Undoubtedly, there is an
increasing acceptance that Bayesian inference can be ideally suited for this pur-
pose. However, the contribution of Bayesian inference to experimental data
analysis and scientific reporting has been obscured by the fact that many au-
thors concentrate too much on the decision-theoretic elements of the Bayesian
approach. This perpetuates the poor “reject/accept” attitude of significance
tests. Without dismissing the merits of the decision-theoretic viewpoint, it
must be recognized that there is another approach which is just as Bayesian
which was developed by Jeffreys in the thirties (Jeffreys, 1961/1939). Follow-
ing the lead of Laplace (Laplace, 1986/1825), this approach aimed at assigning
“noninformative” prior probabilities when nothing was known about the value
of the parameter. In practice, noninformative prior probabilities are vague dis-
tributions which, a priori, do not favor any particular value: they let the data
“speak for themselves”.

In this form the Bayesian paradigm provides reference methods appropriate
for situations involving scientific reporting. Nowadays, thanks to the computer
age, an objective Bayes theory is by no means a speculative viewpoint but on
the contrary is perfectly feasible. Such a theory is better suited to the needs of
users than the frequentist approach and provides scientists with relevant answers
to essential questions raised by experimental data analysis. Bayesian methods



allow users to overcome usual difficulties encountered with the frequentist ap-
proach. In particular, using the Bayesian interpretations of significance tests
and confidence intervals in the language of probabilities about unknown param-
eters is quite natural for the users. In return, the common misuses and abuses
of NHST are more clearly understood. In particular, users of Bayesian meth-
ods become quickly alerted that non-significant results cannot be interpreted as
“proof of no effect.”

Objective — or Fiducial — Bayesian Analysis: Reconciling
Fisher and Bayes?

“A widely accepted objective Bayes theory, which fiducial inference
was intended to be, would be of immense theoretical and practi-
cal importance. [...] A successful objective Bayes theory would
have to provide good frequentist properties in familiar situations,
for instance, reasonable coverage probabilities for whatever replaces
confidence intervals.” (Efron, 1998, pages 106, 112)

Routine Bayesian methods for the most familiar situations encountered in
experimental data analysis are now available. Their aim is to let the statis-
tical analysis express what the data have to say independently of any outside
information (Lecoutre, 2008). They can be learned and used as easily, if not
more, as the t, F or chi-square tests, and offer promising new ways in statistical
methodology (Rouanet et al., 2000). Extensive applications to real data have
been done and have been accepted well in experimental publications.

In order to promote these methods, it is important to give them an ex-
plicit name. Berger (2004) clearly denounced “the common misconception
that Bayesian analysis is a subjective theory” and proposed the name objec-
tive Bayesian analysis. With the same incentive, an alternative name is fiducial
Bayesian methods, which pays tribute to Fisher’s work about “scientific infer-
ence for research workers” (Fisher, 1990/1925) and makes explicit that these
methods are specially designed for use in experimental data analysis.

Other Bayesian Techniques are Promising

“An objective scientific report is a report of the whole prior-to-
posterior mapping of a relevant range of prior probability distri-
butions, keyed to meaningful uncertainty interpretations.” (Dickey,
1986, page 135)

An analysis of experimental data should always include an objective Bayesian
analysis in order to gain “public use” statements. However, informative Bayesian
priors also have an important role to play in experimental investigations. They
may help refining inference and investigating the sensitivity of conclusions to the
choice of the prior. Informative Bayesian techniques are ideally suited for com-
bining information from the data in hand and from other studies, and therefore



planning a series of experiments. Ideally, when “good prior information is avail-
able” it could (should) be used to reach the same conclusion that an “objective
Bayesian analysis”, but with a smaller sample size.

“The essence of science is replication: a scientist should always be
concerned about what would happen if he or another scientist were
to repeat his experiment.” (Guttman, 1983)

The predictive idea is central in experimental investigations. A major strength
of the Bayesian paradigm is the ease with which one can make predictions about
future observations. Bayesian predictive probabilities, because they relate ob-
servables between each other, are very intuitive and even more natural than
posterior probabilities about parameters. They may wonderfully complement
the Bayesian inference about parameters (Lecoutre, Lecoutre & Poitevineau,
2010).

In this way, interesting enough is the fact that Peter Killeen (for an up-to-
date discussion, see Killeen, 2008) recently suggested a new statistic prep (for
“probability of replication”) to present experimental results. This statistic is
the fiducial Bayesian predictive probability of finding a same-sign effect in an
exact replication of an experiment. It has been extensively used in Psychological
Science, and more occasionally in other journals. It follows that for the first time
a Bayesian probability has been routinely reported in scientific publications:
a promising first step towards a broader recognition of the usefulness of the
Bayesian approach?

“An essential aspect of the process of evaluating design strategies is
the ability to calculate predictive probabilities of potential results.”
(Berry, 1991, page 81)

Bayesian predictive procedures give users a very appealing method to an-
swer essential questions such as: “how big should be the experiment to have a
reasonable chance of demonstrating a given conclusion?”, “at an interim stage,
given the current data, what is the chance that the final result will be in some
sense conclusive, or on the contrary inconclusive?” These questions are uncon-
ditional in that they require consideration of all possible values of parameters.
Whereas traditional frequentist practice does not address these questions, pre-
dictive probabilities give them a direct and natural answer.

For instance, from a pilot study, the predictive probabilities on credible limits
for the parameter of interest give a useful summary to help in the choice of the
sample size of an experiment. The predictive approach is also a valuable tool
for interim analyses, and more generally for missing data imputation. It is a
very appealing method to aid the decision to stop an experiment at an interim
stage. On the one hand, if the predictive probability that it will be successful
appears poor, it can be used as a rule to abandon the experiment for futility. On
the other hand, if the predictive probability is sufficiently high, this suggests to
early stop the experiment and conclude success. This is of primary importance
in medical studies where ethical questions are concerned.



Based on an article from Lovric, Miodrag (2011), International Encyclopedia of
Statistical Science. Heidelberg: Springer Science +Business Media, LLC.
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