Namespaces
Variants
Actions

Difference between revisions of "World line"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (Completed rendering of article in TeX.)
 
Line 1: Line 1:
A line in [[Space-time|space-time]] which is the space-time trajectory of a material point. Introduce a local coordinate system <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098150/w0981501.png" />, in some domain of space-time, and let the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098150/w0981502.png" /> lie on a world line <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098150/w0981503.png" />. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098150/w0981504.png" /> is called a world point; it describes the event that at time <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098150/w0981505.png" /> the material point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098150/w0981506.png" /> has space coordinates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098150/w0981507.png" />. The concept of an event, and the related concepts of a world point and a world line are among the basic notions of relativity theory, adding to the concept of a material point borrowed from classical mechanics. Usually one considers smooth (or piecewise-smooth) world lines. The world line of a material point with positive rest mass is a time-like curve. The world line of a material point with zero rest mass (such as a non-quantum model of a photon and other elementary particles of mass zero) is an isotropic line. An arbitrary point of space-time is considered as a world point, that is, a (potential) event, and each time-like or isotropic line as the (possible) world line of some material point. The world line of a material point not under the influence of non-gravitational fields is, according to the [[Geodesic hypothesis|geodesic hypothesis]], a space-time geodesic. The unit tangent vector <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098150/w0981508.png" /> to a world line <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098150/w0981509.png" /> is a four-dimensional velocity vector; in local coordinates it has the form
+
A line in [[Space-time|space-time]] that is the space-time trajectory of a material point. Introduce a local coordinate system $ (t,x,y,z) $ in some domain of space-time, and let the point $ P(t,x,y,z) $ lie on a world line $ \gamma $. We call $ P $ a '''world point'''; it describes the event that at time $ t $, the material point $ P $ has space coordinates $ (x,y,z) $. The concept of an event, and the related concepts of a world point and of a world line are among the basic notions of relativity theory, adding to the concept of a material point borrowed from classical mechanics. Usually, one considers smooth (or piecewise-smooth) world lines. The world line of a material point with positive rest mass is a time-like curve. The world line of a material point with zero rest mass (such as a non-quantum model of a photon and other elementary particles of mass zero) is an isotropic line. An arbitrary point of space-time is considered as a world point, that is, a (potential) event, and each time-like or isotropic line as the (possible) world line of some material point. The world line of a material point not under the influence of non-gravitational fields is, according to the [[Geodesic hypothesis|geodesic hypothesis]], a space-time geodesic. The unit tangent vector $ \dot{\gamma} $ to a world line $ \gamma $ is a $ 4 $-dimensional velocity vector; in local coordinates, it has the form
 
+
$$
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098150/w09815010.png" /></td> </tr></table>
+
\left( \frac{1}{\sqrt{1 - \dfrac{\mathbf{v} \cdot \mathbf{v}}{c^{2}}}};\frac{\dfrac{\mathbf{v}}{c}}{\sqrt{1 - \dfrac{\mathbf{v} \cdot \mathbf{v}}{c^{2}}}} \right),
 
+
$$
 
where
 
where
 
+
$$
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w098/w098150/w09815011.png" /></td> </tr></table>
+
\mathbf{v} \stackrel{\text{df}}{=} \left( \frac{\mathrm{d}{x}}{\mathrm{d}{t}},\frac{\mathrm{d}{y}}{\mathrm{d}{t}},\frac{\mathrm{d}{z}}{\mathrm{d}{t}} \right).
 +
$$
  
 
See also [[Minkowski space|Minkowski space]].
 
See also [[Minkowski space|Minkowski space]].
  
 +
====References====
  
 
+
<table>
====Comments====
+
<TR><TD valign="top">[a1]</TD><TD valign="top">
 
+
E.F. Taylor, J.A. Wheeler, “Space-time physics”, Freeman (1963).</TD></TR>
 
+
<TR><TD valign="top">[a2]</TD><TD valign="top">
====References====
+
A.S. Eddington, “The mathematical theory of relativity”, Cambridge Univ. Press (1960).</TD></TR>
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> E.F. Taylor,   J.A. Wheeler,   "Space-time physics" , Freeman (1963)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> A.S. Eddington,   "The mathematical theory of relativity" , Cambridge Univ. Press (1960)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> P.G. Bergmann,   "Introduction to the theory of relativity" , Dover, reprint (1976)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> D.F. Lawden,   "Tensor calculus and relativity" , Methuen (1962)</TD></TR></table>
+
<TR><TD valign="top">[a3]</TD><TD valign="top">
 +
P.G. Bergmann, “Introduction to the theory of relativity”, Dover, reprint (1976).</TD></TR>
 +
<TR><TD valign="top">[a4]</TD><TD valign="top">
 +
D.F. Lawden, “Tensor calculus and relativity”, Methuen (1962).</TD></TR>
 +
</table>

Latest revision as of 17:25, 8 January 2017

A line in space-time that is the space-time trajectory of a material point. Introduce a local coordinate system $ (t,x,y,z) $ in some domain of space-time, and let the point $ P(t,x,y,z) $ lie on a world line $ \gamma $. We call $ P $ a world point; it describes the event that at time $ t $, the material point $ P $ has space coordinates $ (x,y,z) $. The concept of an event, and the related concepts of a world point and of a world line are among the basic notions of relativity theory, adding to the concept of a material point borrowed from classical mechanics. Usually, one considers smooth (or piecewise-smooth) world lines. The world line of a material point with positive rest mass is a time-like curve. The world line of a material point with zero rest mass (such as a non-quantum model of a photon and other elementary particles of mass zero) is an isotropic line. An arbitrary point of space-time is considered as a world point, that is, a (potential) event, and each time-like or isotropic line as the (possible) world line of some material point. The world line of a material point not under the influence of non-gravitational fields is, according to the geodesic hypothesis, a space-time geodesic. The unit tangent vector $ \dot{\gamma} $ to a world line $ \gamma $ is a $ 4 $-dimensional velocity vector; in local coordinates, it has the form $$ \left( \frac{1}{\sqrt{1 - \dfrac{\mathbf{v} \cdot \mathbf{v}}{c^{2}}}};\frac{\dfrac{\mathbf{v}}{c}}{\sqrt{1 - \dfrac{\mathbf{v} \cdot \mathbf{v}}{c^{2}}}} \right), $$ where $$ \mathbf{v} \stackrel{\text{df}}{=} \left( \frac{\mathrm{d}{x}}{\mathrm{d}{t}},\frac{\mathrm{d}{y}}{\mathrm{d}{t}},\frac{\mathrm{d}{z}}{\mathrm{d}{t}} \right). $$

See also Minkowski space.

References

[a1] E.F. Taylor, J.A. Wheeler, “Space-time physics”, Freeman (1963).
[a2] A.S. Eddington, “The mathematical theory of relativity”, Cambridge Univ. Press (1960).
[a3] P.G. Bergmann, “Introduction to the theory of relativity”, Dover, reprint (1976).
[a4] D.F. Lawden, “Tensor calculus and relativity”, Methuen (1962).
How to Cite This Entry:
World line. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=World_line&oldid=40155
This article was adapted from an original article by D.D. Sokolov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article