Namespaces
Variants
Actions

Difference between revisions of "Wodzicki residue"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (MR/ZBL numbers added)
Line 14: Line 14:
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A. Connes,   "Noncommutative geometry" , Acad. Press (1994)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> E. Elizalde,   "Complete determination of the singularity structure of zeta functions" ''J. Phys.'' , '''A30''' (1997) pp. 2735</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> M. Wodzicki,   "Noncommutative residue I" Yu.I. Manin (ed.) , ''K-Theory, Arithmetic and Geometry'' , ''Lecture Notes in Mathematics'' , '''1289''' , Springer (1987) pp. 320–399</TD></TR></table>
+
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A. Connes, "Noncommutative geometry" , Acad. Press (1994) {{MR|1303779}} {{ZBL|0818.46076}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> E. Elizalde, "Complete determination of the singularity structure of zeta functions" ''J. Phys.'' , '''A30''' (1997) pp. 2735 {{MR|1450345}} {{ZBL|0919.58065}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> M. Wodzicki, "Noncommutative residue I" Yu.I. Manin (ed.) , ''K-Theory, Arithmetic and Geometry'' , ''Lecture Notes in Mathematics'' , '''1289''' , Springer (1987) pp. 320–399 {{MR|0923140}} {{ZBL|0649.58033}} </TD></TR></table>

Revision as of 17:35, 31 March 2012

non-commutative residue

In algebraic quantum field theory (cf. also Quantum field theory), in order to write down an action in operator language one needs a functional that replaces integration [a1]. For the Yang–Mills theory (cf. Yang–Mills field) this is the Dixmier trace, which is the unique extension of the usual trace to the ideal of the compact operators such that the partial sums of its spectrum diverge logarithmically as the number of terms in the sum. The Wodzicki (or non-commutative) residue [a3] is the only extension of the Dixmier trace to the class of pseudo-differential operators (DOs; cf. Pseudo-differential operator) which are not in . It is the only trace one can define in the algebra of DOs (up to a multiplicative constant), its definition being: , with the Laplace operator. It satisfies the trace condition: . A very important property is that it can be expressed as an integral (local form):

with the co-sphere bundle on (some authors put a coefficient in front of the integral, this gives the Adler–Manin residue).

If ( a compact Riemannian manifold, an elliptic operator, ), it coincides with the Dixmier trace, and one has

The Wodzicki residue continues to make sense for DOs of arbitrary order and, even if the symbols , , are not invariant under coordinate choice, their integral is, and defines a trace. All residues at poles of the zeta-function of a DO can be easily obtained from the Wodzicki residue [a2].

References

[a1] A. Connes, "Noncommutative geometry" , Acad. Press (1994) MR1303779 Zbl 0818.46076
[a2] E. Elizalde, "Complete determination of the singularity structure of zeta functions" J. Phys. , A30 (1997) pp. 2735 MR1450345 Zbl 0919.58065
[a3] M. Wodzicki, "Noncommutative residue I" Yu.I. Manin (ed.) , K-Theory, Arithmetic and Geometry , Lecture Notes in Mathematics , 1289 , Springer (1987) pp. 320–399 MR0923140 Zbl 0649.58033
How to Cite This Entry:
Wodzicki residue. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Wodzicki_residue&oldid=24145
This article was adapted from an original article by E. Elizalde (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article