Namespaces
Variants
Actions

Difference between revisions of "Winding number"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
m (fix tex)
Line 33: Line 33:
 
[  \mathop{\rm arg}  z ( \tau ) - c ] _  \Gamma  = \  
 
[  \mathop{\rm arg}  z ( \tau ) - c ] _  \Gamma  = \  
 
  \mathop{\rm Im}  \int\limits _  \Gamma   
 
  \mathop{\rm Im}  \int\limits _  \Gamma   
\frac{1}{z-}
+
\frac{1}{z-c} dz .
dz .
 
 
$$
 
$$
  
Line 59: Line 58:
 
\frac{1}{2 \pi i }
 
\frac{1}{2 \pi i }
 
  \int\limits _  \Gamma   
 
  \int\limits _  \Gamma   
\frac{1}{z-}
+
\frac{1}{z-c} dz .
dz .
 
 
$$
 
$$
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  P. Henrici,  "Applied and computational complex analysis" , '''1''' , Wiley (Interscience)  (1974)  pp. §4.6</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  P. Henrici,  "Applied and computational complex analysis" , '''1''' , Wiley (Interscience)  (1974)  pp. §4.6</TD></TR></table>

Revision as of 21:39, 27 December 2020


Let $ \Gamma = \{ {z( \tau ) } : {\alpha \leq \tau \leq \beta } \} $ be an arc in the complex plane and let $ c $ be a point not on $ \Gamma $. A continuous argument of $ z- c $ on $ \Gamma $ is a continuous real-valued function $ \phi $ on $ [ \alpha , \beta ] $ that for each $ \tau \in [ \alpha , \beta ] $ is an argument of $ z ( \tau ) - c $, i.e. $ z ( \tau ) - c = r \mathop{\rm exp} ( i \phi ( \tau )) $ for some $ r $. Such functions can be found, and if $ \phi ( \tau ) $, $ \psi ( \tau ) $ are two continuous arguments, then they differ by a constant integral multiple of $ 2 \pi $. It follows that the increase of the argument, $ \phi ( \beta ) - \phi ( \alpha ) $, does not depend on the choice of the continuous argument. It is denoted by $ [ \mathop{\rm arg} z ( \tau ) - c ] _ \Gamma $. If $ \Gamma $ is a piecewise-regular arc,

$$ [ \mathop{\rm arg} z ( \tau ) - c ] _ \Gamma = \ \mathop{\rm Im} \int\limits _ \Gamma \frac{1}{z-c} dz . $$

In the special case that $ \Gamma $ is a closed curve, i.e. $ z ( \alpha ) = z ( \beta ) $, $ [ \mathop{\rm arg} z ( \tau ) - c ] _ \Gamma $ is necessarily an integral multiple of $ 2 \pi $ and the integer

$$ n ( \Gamma , c ) = \frac{1}{2 \pi } [ \mathop{\rm arg} z( \tau ) - c] _ \Gamma $$

is called the winding number of $ \Gamma $ with respect to $ c $. For a piecewise-regular closed curve $ \Gamma $ with $ c $ not on $ \Gamma $ one has

$$ n ( \Gamma , c ) = \frac{1}{2 \pi i } \int\limits _ \Gamma \frac{1}{z-c} dz . $$

References

[a1] P. Henrici, "Applied and computational complex analysis" , 1 , Wiley (Interscience) (1974) pp. §4.6
How to Cite This Entry:
Winding number. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Winding_number&oldid=49226