Namespaces
Variants
Actions

Wiener-Hopf operator

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


An operator which arises from another operator by compression to a subspace. Given a linear operator $ A : X \rightarrow X $ and a projection $ P = P ^ {2} $ on $ X $ with range $ { \mathop{\rm Im} } P $, the corresponding Wiener–Hopf operator $ W _ {P} ( A ) $ is defined as the operator on $ { \mathop{\rm Im} } P $ that sends $ x \in { \mathop{\rm Im} } P $ to $ P ( Ax ) \in { \mathop{\rm Im} } P $. Thus, $ W _ {P} ( A ) = PA \mid _ { { \mathop{\rm Im} } P } $.

A Wiener–Hopf integral operator formally acts by the rule

$$ ( Wf ) ( x ) = cf ( x ) + \int\limits _ { 0 } ^ \infty {k ( x - t ) f ( t ) } {dt } $$

( $ x > 0 $) on some space of functions over $ \mathbf R _ {+} = ( 0, \infty ) $, say on $ L _ {p} ( \mathbf R _ {+} ) $( $ 1 \leq p \leq \infty $). It may be regarded as the restriction to $ L _ {p} ( \mathbf R _ {+} ) $ of a convolution integral operator on $ L _ {p} ( \mathbf R ) $. The operator $ W $ is bounded if, for example, $ c \in \mathbf C $ and $ k \in L _ {1} ( \mathbf R ) $. Many properties of $ W $ can be read off from its symbol. This is the function $ a $ given by

$$ a ( \xi ) = c + \int\limits _ { \mathbf R } {k ( t ) e ^ {i \xi t } } {dt } \quad ( \xi \in \mathbf R ) . $$

The operator $ W $ is Fredholm (cf. Fredholm operator), i.e. invertible modulo compact operators, if and only if its symbol $ a $ has no zeros on the one-point compactification $ \mathbf R \cup \{ \infty \} $( cf. also Aleksandrov compactification) of $ \mathbf R $. In that case the kernel and cokernel dimensions of $ W $ are:

$$ { \mathop{\rm dim} } { \mathop{\rm Ker} } W = \max \{ - \kappa, 0 \} $$

$$ { \mathop{\rm dim} } { \mathop{\rm Coker} } W = \max \{ \kappa, 0 \} , $$

where $ \kappa $ is the winding number of the symbol $ a $ about the origin. The equation $ Wf = g $ can be solved by Wiener–Hopf factorization, which means that one represents $ a $ in the form

$$ a ( \xi ) = a _ {-} ( \xi ) \left ( { \frac{\xi - i }{\xi + i } } \right ) ^ \kappa a _ {+} ( \xi ) $$

such that $ a _ {-} $ and $ a _ {+} $ extend to analytic functions without zeros in the lower and upper complex half-planes, respectively.

Many interesting operators are Wiener–Hopf integral operators with discontinuous symbols. For example, the Cauchy singular integral operator $ S _ {+} $( cf. also Singular integral) on $ L _ {p} ( \mathbf R _ {+} ) $( $ 1 < p < \infty $),

$$ ( S _ {+} f ) ( x ) = { \frac{1}{\pi i } } \int\limits _ {\mathbf R _ {+} } { { \frac{f ( t ) }{t - x } } } {dt } \quad ( x \in \mathbf R _ {+} ) , $$

can be interpreted as the Wiener–Hopf integral operator with symbol $ - { \mathop{\rm sign} } \xi $. The spectrum of $ S _ {+} $ on $ L _ {p} ( \mathbf R _ {+} ) $ is the set of all $ \lambda \in \mathbf C $ at which the line segment $ [ - 1,1 ] $ is seen at an angle of at least $ \max \{ { {2 \pi } / p } , { {2 \pi } / q } \} $, where $ {1 / p } + {1 / q } = 1 $.

Wiener–Hopf integral operators with matrix-valued symbols, on finite intervals, or on higher-dimensional domains (including the quarter-plane) have also been extensively studied.

A discrete Wiener–Hopf operator, or a Toeplitz operator (cf. also Toeplitz matrix), is given by a matrix of the form $ ( a _ {j - k } ) _ {j,k = 0 } ^ \infty $ on some sequence space, e.g. on $ l ^ {p} ( \mathbf Z _ {+} ) $. In this case the symbol is the function on the complex unit circle whose Fourier coefficients constitute the sequence $ ( a _ {n} ) _ {n \in \mathbf Z } $.

There is a rich literature on Wiener–Hopf operators. A good introduction is the classical monograph [a1]; [a2] and [a3] provide an overview of some recent developments.

References

[a1] I. Gohberg, I.A. Feldman, "Convolution equations and projection methods for their solution" , Amer. Math. Soc. (1974)
[a2] A. Böttcher, B. Silbermann, "Analysis of Toeplitz operators" , Springer (1990)
[a3] I. Gohberg, S. Goldberg, M.A. Kaashoek, "Classes of linear operators" , I–II , Birkhäuser (1990–1993)
How to Cite This Entry:
Wiener-Hopf operator. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Wiener-Hopf_operator&oldid=49217
This article was adapted from an original article by A. Böttcher (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article