Namespaces
Variants
Actions

Difference between revisions of "Whitney extension theorem"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (MR/ZBL numbers added)
m (correction)
 
(15 intermediate revisions by 2 users not shown)
Line 1: Line 1:
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w0978301.png" /> (respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w0978302.png" />) be the space of all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w0978303.png" /> times differentiable (respectively, smooth) real-valued functions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w0978304.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w0978305.png" /> be compact. For a multi-index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w0978306.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w0978307.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w0978308.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w0978309.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783010.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783011.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783012.png" />. The vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783013.png" /> consists of all tuples <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783014.png" /> of continuous functions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783015.png" /> indexed by the multi-indices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783016.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783017.png" />. For instance, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783018.png" /> is a single point, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783019.png" /> consists of sequences of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783020.png" /> real numbers, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783021.png" />, and can be identified with the space of all polynomials of total degree <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783022.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783023.png" /> variables, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783024.png" /> can be seen as the space of all power series in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783025.png" /> variables.
+
{{TEX|done}}
 +
{{MSC|26E10}}$\def\a{\alpha}
 +
\def\b{\beta}
 +
\def\p{\partial}$
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783026.png" /> assign to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783027.png" /> the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783028.png" />-jet of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783029.png" />, i.e. the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783030.png" />-tuple of continuous functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783031.png" /> restricted to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783032.png" />; cf. also [[Jet|Jet]]. For each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783033.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783034.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783035.png" /> be the polynomial
+
A deep theorem from the real analysis, showing which data are required to extent a real-valued function from a compact subset in $\R^n$ to its open neighborhood in a $C^m$-smooth or $C^\infty$-smooth way.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783036.png" /></td> </tr></table>
+
==Jets and terminology==
 +
If $U$ is an open subset in $\R^n$ and $f:U\to\R$ is a smooth function, then one can define its partial derivatives to any order not exceeding the smoothness: in the [[multi-index notation]] the collection of all derivatives
 +
$$
 +
f^{(\a)}=\p^\a f\in C^{m-|\a|}(U),\qquad 0\le |\a|\le m,\ f^{(0)}=f,
 +
$$
 +
is called an $m$-[[jet]] of the function $f\in C^m(U)$.
  
and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783037.png" /> be the element
+
The different derivatives are related by the obvious formulas $\p^\b f^{(\a)}=f^{(\a+\b)}$ as long as $|\a|+|\b|\le m$. This allows to compare them using the Taylor expansion. For each point $a\in U$ and each derivative $f^{(\a)}$ one can form the Taylor polynomial of order $r\le m-|\a|$ centered at $a$,
 +
$$
 +
\Big(T_a^r f^{(\a)}\Big)(x)=\sum_{|\b|\le r}\frac1{\b!}\Big(\p^\b f^{(\alpha)}(a)\Big)\cdot(x-a)^{\b}=
 +
\sum_{|\b|\le r}\frac1{\b!}f^{(\a+\b)}(a)\cdot(x-a)^{\b}.\tag T
 +
$$
 +
The difference between $f^{(\a)}(x)$ and the value provided by the Taylor polynomial $\Big(T_a^r f^{(\a)}\Big)(x)$ should be small together with $|x-a|$:
 +
$$
 +
\Big|f^{(\a)}(x)-\Big(T_a^r f^{(\a)}\Big)(x)\Big|=o\Big(|x-a|^{r}\Big).
 +
$$
 +
These asymptotic conditions are necessary for the functions $f^{(\a)}$ to be partial derivatives of a smooth function.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783038.png" /></td> </tr></table>
+
==Whitney data==
 +
Let $K\Subset \R^n$ be a compact subset of $\R^n$. The ''Whitney data'' (or "smooth function in the sense of Whitney") is the collection of continuous functions
 +
$$
 +
\{f^\a:K\to\R,\ |\a|\le m\},
 +
$$
 +
which satisfies the compatibility condition that were established above for the partial derivatives: for each multiindex $\a$ the differences
 +
$$
 +
R_m^\a(a,x)=f^\a(x)-\sum_{|\b|\le m-|\a|}\frac1{\b!}f^{\a+\b}(a)\cdot(x-a)^\b,\qquad x,a\in K,
 +
\tag I
 +
$$
 +
should be small as specified,
 +
$$
 +
|R^\a_m(a,x)|=o\Big(|x-a|^{m-|\a|}\Big),\qquad x,a\in K,\ |x-a|\to0.
 +
$$
  
of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783039.png" /> with components <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783040.png" />. The space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783041.png" /> of functions differentiable in the sense of Whitney on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783042.png" /> consists of those <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783043.png" /> such that
+
'''Theorem''' (H. Whitney, 1934, {{Cite|W}}).
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783044.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
+
Any Whitney data collection on $K\Subset U$ can be extended as a $C^m$-smooth function on $\R^n$. The infinite collection of Whitney data (defined for all $m$) extends as a $C^\infty$-smooth function on $\R^n$. In both cases this means that there exists a smooth function $f:\R^n\to\R$ such that for any multiindex $\a$ the restriction of $f^{(\a)}=\p^\a f$ coincides with the specified $f^\a$ after restriction on $K$.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783045.png" /></td> </tr></table>
+
The proof of this result can be found in {{Cite|M|Ch. 1}}, see also {{Cite|N|Sect. 1.5}}.
  
Of course, the elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783046.png" /> are not really functions, but that does no harm. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783047.png" /> is a point, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783048.png" />. The Whitney extension theorem now states that there exists a linear mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783049.png" /> such that for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783050.png" /> and every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783051.png" />,
+
== Borel theorem ==
 +
A particular case of the Whitney extension theorem corresponds to $K=\{0\}\Subset\R^n$ being a single point at the origin. In this case the Whitney data reduces to the (finite or infinite) collection of real numbers $c_\a$. The "integrability conditions" for this special case are void, thus any formal power series $\sum_{\a}c_\a x^\a$ is the Taylor series of some $C^\infty$-smooth function (clearly, the case of finite $m$ is trivial for such compact). This statement is known as the [[Borel theorem]], {{Cite|N|Sect. 1.5}}.  
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783052.png" /></td> </tr></table>
+
== Quantitative versions==
 +
The Whitney theorem is qualitative, but its quantitative reformulation is of interest for applications. More specifically, given all (or just a part) of Whitney data, one can look for the smooth extension with effective estimate of the $C^m$-norm. In such quantitative setting the problem is interesting and highly nontrivial even for the problem of extension of functions from finite point set.
  
and such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783053.png" /> is smooth on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783054.png" />.
+
The phenomenon can be roughly described as follows: given a finite subset $K\Subset\R^n$ and a function $f^0:K\to\R$ (finite collection of values), one looks for a $C^m$-smooth function $f:\R^n\to\R$ with the explicitly controlled $C^m$-norm, which would interpolate $f^0$, i.e., $f|_K=f^0$. It turns out that there always exists a finite number $N=N(n,m)$, depending only on $n,m$, such that the norm of the extension $\|f\|_{C^m}$ is sufficient to verify only for extensions from all $N$-point subsets of $K$. For instance, $N(2,2)=6$, and all obstructions to "economic" $C^m$-smooth extension of $f^0$ appear already for 6-point subsets. See {{Cite|BS}}, {{Cite|F}} and references therein for further information.
 
 
For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783055.png" /> it follows that for every power series <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783056.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783057.png" /> (in the variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783058.png" />) there is a smooth function on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783059.png" /> whose Taylor series at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783060.png" /> is precisely this power series.
 
 
 
This results also (by induction on the number of variables) from the Borel extension lemma. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783061.png" /> be a series of smooth functions defined on a neighbourhood of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783062.png" />. Then there is a smooth function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783063.png" /> defined on a neighbourhood of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783064.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783065.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097830/w09783066.png" />.
 
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H. Whitney, "Analytic extensions of differentiable functions defined in closed sets" ''Trans. Amer. Math. Soc.'' , '''36''' (1934) pp. 63–89 {{MR|1501735}} {{ZBL|0008.24902}} {{ZBL|60.0217.01}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> B. Malgrange, "Ideals of differentiable functions" , Oxford Univ. Press (1966) pp. Chapt. I {{MR|2065138}} {{MR|0212575}} {{ZBL|0177.17902}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J.C. Tougeron, "Ideaux de fonction différentiables" , Springer (1972) pp. Chapt. IV {{MR|0440598}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> M. Golubitsky, "Stable mappings and their singularities" , Springer (1973) pp. 108ff {{MR|0341518}} {{ZBL|0294.58004}} </TD></TR></table>
+
{|
 +
|-
 +
|valign="top"|{{Ref|W}}||valign="top"|H. Whitney, ''Analytic extensions of differentiable functions defined in closed sets'', Trans. Amer. Math. Soc., '''36''' (1934) pp. 63–89 {{MR|1501735}} {{ZBL|0008.24902}} {{ZBL|60.0217.01}}
 +
|-
 +
|valign="top"|{{Ref|M}}||valign="top"| B. Malgrange, ''Ideals of differentiable functions'', Oxford Univ. Press (1966), {{MR|2065138}} {{MR|0212575}} {{ZBL|0177.17902}}  
 +
|-
 +
|valign="top"|{{Ref|N}}||valign="top"|Narasimhan, R. ''Analysis on real and complex manifolds'', North-Holland Mathematical Library, '''35'''. North-Holland Publishing Co., Amsterdam, 1985. {{MR|0832683}}
 +
|-
 +
|valign="top"|{{Ref|BS}}||valign="top"| Brudnyi, Y. and Shvartsman, P. ''Whitney's extension problem for multivariate $C^{1,\omega}$-functions''.  Trans. Amer. Math. Soc.  '''353'''  (2001),  no. 6, 2487–2512, {{MR|1814079}}
 +
|-
 +
|valign="top"|{{Ref|F}}||valign="top"| Fefferman, C. ''A sharp form of Whitney's extension theorem'',  Ann. of Math. (2)  '''161'''  (2005),  no. 1, 509–577. {{MR|2150391}}  
 +
|-
 +
|}

Latest revision as of 12:24, 12 December 2020

2020 Mathematics Subject Classification: Primary: 26E10 [MSN][ZBL]$\def\a{\alpha} \def\b{\beta} \def\p{\partial}$

A deep theorem from the real analysis, showing which data are required to extent a real-valued function from a compact subset in $\R^n$ to its open neighborhood in a $C^m$-smooth or $C^\infty$-smooth way.

Jets and terminology

If $U$ is an open subset in $\R^n$ and $f:U\to\R$ is a smooth function, then one can define its partial derivatives to any order not exceeding the smoothness: in the multi-index notation the collection of all derivatives $$ f^{(\a)}=\p^\a f\in C^{m-|\a|}(U),\qquad 0\le |\a|\le m,\ f^{(0)}=f, $$ is called an $m$-jet of the function $f\in C^m(U)$.

The different derivatives are related by the obvious formulas $\p^\b f^{(\a)}=f^{(\a+\b)}$ as long as $|\a|+|\b|\le m$. This allows to compare them using the Taylor expansion. For each point $a\in U$ and each derivative $f^{(\a)}$ one can form the Taylor polynomial of order $r\le m-|\a|$ centered at $a$, $$ \Big(T_a^r f^{(\a)}\Big)(x)=\sum_{|\b|\le r}\frac1{\b!}\Big(\p^\b f^{(\alpha)}(a)\Big)\cdot(x-a)^{\b}= \sum_{|\b|\le r}\frac1{\b!}f^{(\a+\b)}(a)\cdot(x-a)^{\b}.\tag T $$ The difference between $f^{(\a)}(x)$ and the value provided by the Taylor polynomial $\Big(T_a^r f^{(\a)}\Big)(x)$ should be small together with $|x-a|$: $$ \Big|f^{(\a)}(x)-\Big(T_a^r f^{(\a)}\Big)(x)\Big|=o\Big(|x-a|^{r}\Big). $$ These asymptotic conditions are necessary for the functions $f^{(\a)}$ to be partial derivatives of a smooth function.

Whitney data

Let $K\Subset \R^n$ be a compact subset of $\R^n$. The Whitney data (or "smooth function in the sense of Whitney") is the collection of continuous functions $$ \{f^\a:K\to\R,\ |\a|\le m\}, $$ which satisfies the compatibility condition that were established above for the partial derivatives: for each multiindex $\a$ the differences $$ R_m^\a(a,x)=f^\a(x)-\sum_{|\b|\le m-|\a|}\frac1{\b!}f^{\a+\b}(a)\cdot(x-a)^\b,\qquad x,a\in K, \tag I $$ should be small as specified, $$ |R^\a_m(a,x)|=o\Big(|x-a|^{m-|\a|}\Big),\qquad x,a\in K,\ |x-a|\to0. $$

Theorem (H. Whitney, 1934, [W]).

Any Whitney data collection on $K\Subset U$ can be extended as a $C^m$-smooth function on $\R^n$. The infinite collection of Whitney data (defined for all $m$) extends as a $C^\infty$-smooth function on $\R^n$. In both cases this means that there exists a smooth function $f:\R^n\to\R$ such that for any multiindex $\a$ the restriction of $f^{(\a)}=\p^\a f$ coincides with the specified $f^\a$ after restriction on $K$.

The proof of this result can be found in [M, Ch. 1], see also [N, Sect. 1.5].

Borel theorem

A particular case of the Whitney extension theorem corresponds to $K=\{0\}\Subset\R^n$ being a single point at the origin. In this case the Whitney data reduces to the (finite or infinite) collection of real numbers $c_\a$. The "integrability conditions" for this special case are void, thus any formal power series $\sum_{\a}c_\a x^\a$ is the Taylor series of some $C^\infty$-smooth function (clearly, the case of finite $m$ is trivial for such compact). This statement is known as the Borel theorem, [N, Sect. 1.5].

Quantitative versions

The Whitney theorem is qualitative, but its quantitative reformulation is of interest for applications. More specifically, given all (or just a part) of Whitney data, one can look for the smooth extension with effective estimate of the $C^m$-norm. In such quantitative setting the problem is interesting and highly nontrivial even for the problem of extension of functions from finite point set.

The phenomenon can be roughly described as follows: given a finite subset $K\Subset\R^n$ and a function $f^0:K\to\R$ (finite collection of values), one looks for a $C^m$-smooth function $f:\R^n\to\R$ with the explicitly controlled $C^m$-norm, which would interpolate $f^0$, i.e., $f|_K=f^0$. It turns out that there always exists a finite number $N=N(n,m)$, depending only on $n,m$, such that the norm of the extension $\|f\|_{C^m}$ is sufficient to verify only for extensions from all $N$-point subsets of $K$. For instance, $N(2,2)=6$, and all obstructions to "economic" $C^m$-smooth extension of $f^0$ appear already for 6-point subsets. See [BS], [F] and references therein for further information.

References

[W] H. Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc., 36 (1934) pp. 63–89 MR1501735 Zbl 0008.24902 Zbl 60.0217.01
[M] B. Malgrange, Ideals of differentiable functions, Oxford Univ. Press (1966), MR2065138 MR0212575 Zbl 0177.17902
[N] Narasimhan, R. Analysis on real and complex manifolds, North-Holland Mathematical Library, 35. North-Holland Publishing Co., Amsterdam, 1985. MR0832683
[BS] Brudnyi, Y. and Shvartsman, P. Whitney's extension problem for multivariate $C^{1,\omega}$-functions. Trans. Amer. Math. Soc. 353 (2001), no. 6, 2487–2512, MR1814079
[F] Fefferman, C. A sharp form of Whitney's extension theorem, Ann. of Math. (2) 161 (2005), no. 1, 509–577. MR2150391
How to Cite This Entry:
Whitney extension theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Whitney_extension_theorem&oldid=24595