Namespaces
Variants
Actions

Whitehead torsion

From Encyclopedia of Mathematics
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.


An element of the reduced Whitehead group $ \overline{K}_{1} A $, constructed from a complex of $ A $- modules. In particular, one has the Whitehead torsion of a mapping complex. Let $ A $ be a ring and let $ F $ be a finitely-generated free $ A $- module. Given two bases $ b = ( b _ {1} \dots b _ {k} ) $ and $ c = ( c _ {1} \dots c _ {k} ) $ of $ F $, if $ c _ {i} = \sum _ {j=1}^ {k} a _ {ij} b _ {j} $, then the matrix $ \| a _ {ij} \| $ is invertible and, hence, defines an element of the group $ \overline{K}_ {1} A $, denoted by $ [ c / b ] $. If $ [ c/b ] = 0 $, the bases $ b $ and $ c $ are said to be equivalent. It is clear that

$$ [ e/c ] + [ c/b ] = \ [ e/b ] ,\ [ b/b ] = 0 . $$

For any exact sequence $ 0 \rightarrow E \rightarrow F \rightarrow G \rightarrow 0 $ of free $ A $- modules and bases $ e $ of $ E $ and $ g $ of $ G $ one can define a basis $ eg = ( e, f ) $ of $ F $, where the images of the elements $ f $ form the basis $ g $. The equivalence class of this basis depends only on those of $ e $ and $ g $. Now let

$$ C : C _ {n} \mathop \rightarrow \limits ^ \partial C _ {n-1} \ \mathop \rightarrow \limits ^ \partial \dots \mathop \rightarrow \limits ^ \partial C _ {0} $$

be a complex of free $ A $- modules $ C _ {i} $ with chosen bases $ c _ {i} $, whose homology complex is free, with a chosen basis $ h _ {i} $. Let the images of the homomorphisms $ \partial : C _ {i+1} \rightarrow C _ {i} $ again be free, with basis $ b _ {i} $. The combinations $ b _ {i} h _ {i} b _ {i-1} $ define a new basis in $ C _ {i} $. Then the torsion of the complex $ C $ is given by the formula

$$ \tau ( C) = - \sum_{i=0}^ { n } (- 1) ^ {i} [ c _ {i} / b _ {i} h _ {i} b _ {i-1} ] \in \overline{K}_{1} A. $$

This torsion does not depend on the choice of the bases $ b _ {i} $ for the boundary groups but only on $ c _ {i} $ and $ h _ {i} $.

Given a pair $ ( K , L) $ consisting of a finite connected complex $ K $ and a subcomplex $ L $ which is a deformation retract of $ K $, one puts $ \Pi \simeq \pi _ {1} ( K) \simeq \pi _ {1} ( L) $. If $ \widetilde{K} $ and $ \widetilde{L} $ are the universal covering complexes for $ K $ and $ L $, then $ \sigma \in \Pi $ defines a chain mapping $ \sigma : ( \widetilde{k} , \widetilde{i} ) \rightarrow ( \widetilde{K} , \widetilde{L} ) $ and hence a mapping of chain groups $ \sigma _ {*} : C ( \widetilde{K} , \widetilde{L} ) \rightarrow C ( \widetilde{K} , \widetilde{L} ) $, i.e. $ C _ {p} ( \widetilde{K} , \widetilde{L} ) $ is a $ \mathbf Z [ \Pi ] $- module. One thus obtains a free chain complex

$$ C _ {n} ( \widetilde{K} , \widetilde{L} ) \rightarrow C _ {n-1} ( \widetilde{K} , \widetilde{L} ) \rightarrow \dots \rightarrow C _ {0} ( \widetilde{K} , \widetilde{L} ) $$

over $ \mathbf Z [ \Pi ] $. The homology of this complex is trivial, i.e. $ \widetilde{L} $ is a deformation retract of $ \widetilde{K} $.

Let $ e _ {1} \dots e _ \alpha $ be $ p $- chains in $ K \setminus L $. For each chain $ e _ {i} $ one chooses a representative $ \widetilde{e} _ {i} $ in $ \widetilde{K} $ lying above $ e _ {i} $ and fixes its orientation. Then $ c _ {p} = ( \widetilde{e} _ {1} \dots \widetilde{e} _ \alpha ) $ is a basis in $ C _ {p} ( \widetilde{K} , \widetilde{L} ) $; hence there is defined a subset $ \tau C ( \widetilde{K} , \widetilde{L} ) $ of $ \widetilde{K} _ {1} \mathbf Z [ \Pi ] $, called the torsion. In general it depends on the choice of the bases $ c _ {p} $. However, the image of this set in the Whitehead group $ \mathop{\rm Wh} ( \Pi ) $ consists of a single element $ \tau ( K, L) $, called the Whitehead torsion of the pair $ ( K , L) $.

An important property of the Whitehead torsion is its combinatorial invariance. Whether $ \tau ( K, L) $ is a topological invariant is not known (1984).

Let $ f: X \rightarrow Y $ be a homotopy equivalence ( $ X, Y $ chain complexes). Then the torsion of the mapping $ f $ is defined as $ \tau ( f ) = f _ {*} \tau ( M _ {f} , X) \in \mathop{\rm Wh} ( \pi _ {1} Y) $, where $ M _ {f} $ is the mapping cylinder of $ f $. If $ \tau ( f ) = 0 $, then $ f $ is called a simple homotopy equivalence. Properties of the torsion $ \tau ( f ) $ are: 1) if $ i : L \rightarrow K $ is an inclusion, then $ \tau ( i) = \tau ( K , L) $; 2) $ \tau ( g \circ f ) = \tau ( g) + g _ {*} \tau ( f ) $; 3) if $ f $ is homotopic to $ f ^ { \prime } $, then $ \tau ( f ) = \tau ( f ^ { \prime } ) $; 4) if $ I $ is the identity mapping of a simply-connected complex with Euler characteristic $ \chi $, then $ \tau ( I \times f ) = \chi \cdot \tau ( f ) $.

Comments

The topological invariance of $ \tau ( K, L) $ is treated in [a1][a3].

References

[1] J.H.C. Whitehead, "Simple homotopy types" Amer. Math. J. , 72 (1950) pp. 1–57
[2] J.W. Milnor, "Whitehead torsion" Bull. Amer. Math. Soc. , 72 (1966) pp. 358–426
[a1] T.A. Chapman, "Topological invariance of Whitehead torsion" Amer. J. Math. , 96 (1974) pp. 488–497
[a2] S. Ferry, "The homeomorphism group of a compact Hilbert cube manifold is an ANR" Ann. of Math. , 106 (1977) pp. 101–119
[a3] J.E. West, "Mapping Hilbert cube manifolds to ANR's: a solution to a conjecture of Borsuk" Ann. of Math. , 106 (1977) pp. 1–18
How to Cite This Entry:
Whitehead torsion. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Whitehead_torsion&oldid=55125