Namespaces
Variants
Actions

Difference between revisions of "Well-ordered set"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (Completed rendering of article in TeX.)
 
Line 1: Line 1:
A set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097650/w0976501.png" /> equipped with a binary relation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097650/w0976502.png" /> that satisfies the following conditions:
+
A set $ \mathbb{P} $ equipped with a binary relation $ \leq $ that satisfies the following conditions:
  
1) for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097650/w0976503.png" /> either <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097650/w0976504.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097650/w0976505.png" />;
+
# For any $ x,y \in \mathbb{P} $, either $ x \leq y $ or $ y \leq x $.
 
+
# For any $ x,y \in \mathbb{P} $, if $ x \leq y $ and $ y \leq x $, then $ x = y $.
2) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097650/w0976506.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097650/w0976507.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097650/w0976508.png" />;
+
# For any $ x,y,z \in \mathbb{P} $, if $ x \leq y $ and $ y \leq z $, then $ x \leq z $.
 
+
# In any non-empty subset $ X \subseteq \mathbb{P} $, there exists an element $ a $ such that $ a \leq x $ for all $ x \in X $.
3) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097650/w0976509.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097650/w09765010.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097650/w09765011.png" />;
 
 
 
4) in any non-empty subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097650/w09765012.png" /> there exists an element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097650/w09765013.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097650/w09765014.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097650/w09765015.png" />.
 
  
 
Thus, a well-ordered set is a [[Totally ordered set|totally ordered set]] satisfying the minimum condition.
 
Thus, a well-ordered set is a [[Totally ordered set|totally ordered set]] satisfying the minimum condition.
  
The concept of a well-ordered set was introduced by G. Cantor [[#References|[1]]]. An example of a well-ordered set is the naturally ordered set of natural numbers. On the other hand, the interval of real numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097650/w09765016.png" /> with the natural order is not well-ordered. Any subset of a well-ordered set is itself well-ordered. The Cartesian product of a finite number of well-ordered sets is well-ordered by the relation of [[Lexicographic order|lexicographic order]]. A totally ordered set is well-ordered if and only if it contains no subset which is anti-isomorphic to the set of natural numbers (cf. [[Anti-isomorphism of partially ordered sets|Anti-isomorphism of partially ordered sets]]).
+
The concept of a well-ordered set was introduced by G. Cantor ([[#References|[1]]]). An example of a well-ordered set is the naturally ordered set of natural numbers. On the other hand, the interval of real numbers $ [0,1] $ with the natural order is not well-ordered. Any subset of a well-ordered set is itself well-ordered. The Cartesian product of a finite number of well-ordered sets is well-ordered by the relation of [[Lexicographic order|lexicographic order]]. A totally ordered set is well-ordered if and only if it contains no subset that is [[Anti-isomorphism of partially ordered sets|anti-isomorphic]] to the set of natural numbers.
 
 
The smallest element of a well-ordered set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097650/w09765017.png" /> is denoted by zero (the symbol 0). For any element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097650/w09765018.png" />, the set
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097650/w09765019.png" /></td> </tr></table>
 
  
is called an initial segment of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097650/w09765020.png" />. For any element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097650/w09765021.png" /> which is not the largest element in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097650/w09765022.png" /> there exists an element immediately following it; it is usually denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097650/w09765023.png" />. An element of a well-ordered set which has no element immediately preceding it is called a limit element.
+
The smallest element of a well-ordered set $ \mathbb{P} $ is denoted by zero (the symbol $ 0 $). For any element $ a \in \mathbb{P} $, the set
 +
$$
 +
[0,a) \stackrel{\text{df}}{=} \{ x \mid x \in \mathbb{P}, x < a \}
 +
$$
 +
is called an '''initial segment''' of $ \mathbb{P} $. For any element $ a $ that is not the largest element in $ \mathbb{P} $, there exists an element immediately following it; it is usually denoted by $ a + 1 $. An element of a well-ordered set that has no element immediately preceding it is called a '''limit element'''.
  
The comparison theorem. For any two well-ordered sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097650/w09765024.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097650/w09765025.png" /> one and only one of the following situations occurs: a) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097650/w09765026.png" /> is isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097650/w09765027.png" />; b) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097650/w09765028.png" /> is isomorphic to an initial segment of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097650/w09765029.png" />; or c) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097650/w09765030.png" /> is isomorphic to an initial segment of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097650/w09765031.png" />.
+
'''The Comparison Theorem.''' For any two well-ordered sets $ \mathbb{P}_{1} $ and $ \mathbb{P}_{2} $, one and only one of the following situations occurs: (a) $ \mathbb{P}_{1} $ is isomorphic to $ \mathbb{P}_{2} $; (b) $ \mathbb{P}_{1} $ is isomorphic to an initial segment of $ \mathbb{P}_{2} $; or (c) $ \mathbb{P}_{2} $ is isomorphic to an initial segment of $ \mathbb{P}_{1} $.
  
If the [[Axiom of choice|axiom of choice]] is included in the axioms of set theory, it may be shown that it is possible to impose on any non-empty set an order relation which converts it into a well-ordered set (i.e. any non-empty set can be well-ordered). This theorem, known as the [[Zermelo theorem|Zermelo theorem]], is in fact equivalent to the axiom of choice. Zermelo's theorem and the comparison theorem form the basis for the comparison between cardinalities of sets. Order types of well-ordered sets are called ordinal numbers (cf. [[Order type|Order type]]; [[Ordinal number|Ordinal number]]).
+
If the [[Axiom of choice|axiom of choice]] is included in the axioms of set theory, it may be shown that it is possible to impose on any non-empty set an order relation that converts it into a well-ordered set (i.e., any non-empty set can be well-ordered). This theorem, known as [[Zermelo theorem|'''Zermelo’s Well-Ordering Theorem''']], is in fact equivalent to the axiom of choice. Zermelo’s Well-Ordering Theorem and the Comparison Theorem form the basis for the comparison between cardinalities of sets. [[Order type|Order types]] of well-ordered sets are called [[Ordinal number|'''ordinal numbers''']].
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  G. Cantor,  "Über unendliche, lineaire Punktmannigfaltigkeiten"  ''Math. Ann.'' , '''21'''  (1883)  pp. 51–58</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  P.S. Aleksandrov,  "Einführung in die Mengenlehre und die Theorie der reellen Funktionen" , Deutsch. Verlag Wissenschaft.  (1956)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  F. Hausdorff,  "Grundzüge der Mengenlehre" , Leipzig  (1914)  (Reprinted (incomplete) English translation: Set theory, Chelsea (1978))</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  N. Bourbaki,  "Elements of mathematics. Theory of sets" , Addison-Wesley  (1968)  (Translated from French)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  K. Kuratowski,  A. Mostowski,  "Set theory" , North-Holland  (1968)</TD></TR></table>
 
  
 +
<table>
 +
<TR><TD valign="top">[1]</TD><TD valign="top">
 +
G. Cantor, “Über unendliche, lineaire Punktmannigfaltigkeiten”, ''Math. Ann.'', '''21''' (1883), pp. 51–58.</TD></TR>
 +
<TR><TD valign="top">[2]</TD> <TD valign="top">
 +
P.S. Aleksandrov, “Einführung in die Mengenlehre und die Theorie der reellen Funktionen”, Deutsch. Verlag Wissenschaft. (1956). (Translated from Russian)</TD></TR>
 +
<TR><TD valign="top">[3]</TD><TD valign="top">
 +
F. Hausdorff, “Grundzüge der Mengenlehre”, Leipzig (1914). (Reprinted (incomplete) English translation: Set theory, Chelsea (1978))</TD></TR>
 +
<TR><TD valign="top">[4]</TD><TD valign="top">
 +
N. Bourbaki, “Elements of mathematics. Theory of sets”, Addison-Wesley (1968). (Translated from French)</TD></TR>
 +
<TR><TD valign="top">[5]</TD><TD valign="top">
 +
K. Kuratowski, A. Mostowski, “Set theory”, North-Holland (1968).</TD></TR>
 +
</table>
  
 +
====Comments====
  
====Comments====
+
In the definition above, Condition (3) (the transitivity of the order relation) is in fact redundant: It follows from the existence of a least element in the subset $ \{ x,y,z \} $.
In the definition above, condition 3) (the transitivity of the order relation) is in fact redundant: it follows from the existence of a least element in the subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097650/w09765032.png" />.
 
  
Sometimes a well-ordered set is called a totally well-ordered set, reflecting the fact that the ordering is a total ordering or linear ordering. Cf. [[Totally ordered set|Totally ordered set]].
+
Sometimes, a well-ordered set is called a '''totally well-ordered set''', reflecting the fact that the ordering is a [[Totally ordered set|total ordering]] or linear ordering.
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A. Levy,   "Basic set theory" , Springer (1979)</TD></TR></table>
+
 
 +
<table>
 +
<TR><TD valign="top">[a1]</TD><TD valign="top">
 +
A. Levy, “Basic set theory”, Springer (1979).</TD></TR>
 +
</table>

Latest revision as of 03:09, 8 January 2017

A set $ \mathbb{P} $ equipped with a binary relation $ \leq $ that satisfies the following conditions:

  1. For any $ x,y \in \mathbb{P} $, either $ x \leq y $ or $ y \leq x $.
  2. For any $ x,y \in \mathbb{P} $, if $ x \leq y $ and $ y \leq x $, then $ x = y $.
  3. For any $ x,y,z \in \mathbb{P} $, if $ x \leq y $ and $ y \leq z $, then $ x \leq z $.
  4. In any non-empty subset $ X \subseteq \mathbb{P} $, there exists an element $ a $ such that $ a \leq x $ for all $ x \in X $.

Thus, a well-ordered set is a totally ordered set satisfying the minimum condition.

The concept of a well-ordered set was introduced by G. Cantor ([1]). An example of a well-ordered set is the naturally ordered set of natural numbers. On the other hand, the interval of real numbers $ [0,1] $ with the natural order is not well-ordered. Any subset of a well-ordered set is itself well-ordered. The Cartesian product of a finite number of well-ordered sets is well-ordered by the relation of lexicographic order. A totally ordered set is well-ordered if and only if it contains no subset that is anti-isomorphic to the set of natural numbers.

The smallest element of a well-ordered set $ \mathbb{P} $ is denoted by zero (the symbol $ 0 $). For any element $ a \in \mathbb{P} $, the set $$ [0,a) \stackrel{\text{df}}{=} \{ x \mid x \in \mathbb{P}, x < a \} $$ is called an initial segment of $ \mathbb{P} $. For any element $ a $ that is not the largest element in $ \mathbb{P} $, there exists an element immediately following it; it is usually denoted by $ a + 1 $. An element of a well-ordered set that has no element immediately preceding it is called a limit element.

The Comparison Theorem. For any two well-ordered sets $ \mathbb{P}_{1} $ and $ \mathbb{P}_{2} $, one and only one of the following situations occurs: (a) $ \mathbb{P}_{1} $ is isomorphic to $ \mathbb{P}_{2} $; (b) $ \mathbb{P}_{1} $ is isomorphic to an initial segment of $ \mathbb{P}_{2} $; or (c) $ \mathbb{P}_{2} $ is isomorphic to an initial segment of $ \mathbb{P}_{1} $.

If the axiom of choice is included in the axioms of set theory, it may be shown that it is possible to impose on any non-empty set an order relation that converts it into a well-ordered set (i.e., any non-empty set can be well-ordered). This theorem, known as Zermelo’s Well-Ordering Theorem, is in fact equivalent to the axiom of choice. Zermelo’s Well-Ordering Theorem and the Comparison Theorem form the basis for the comparison between cardinalities of sets. Order types of well-ordered sets are called ordinal numbers.

References

[1] G. Cantor, “Über unendliche, lineaire Punktmannigfaltigkeiten”, Math. Ann., 21 (1883), pp. 51–58.
[2] P.S. Aleksandrov, “Einführung in die Mengenlehre und die Theorie der reellen Funktionen”, Deutsch. Verlag Wissenschaft. (1956). (Translated from Russian)
[3] F. Hausdorff, “Grundzüge der Mengenlehre”, Leipzig (1914). (Reprinted (incomplete) English translation: Set theory, Chelsea (1978))
[4] N. Bourbaki, “Elements of mathematics. Theory of sets”, Addison-Wesley (1968). (Translated from French)
[5] K. Kuratowski, A. Mostowski, “Set theory”, North-Holland (1968).

Comments

In the definition above, Condition (3) (the transitivity of the order relation) is in fact redundant: It follows from the existence of a least element in the subset $ \{ x,y,z \} $.

Sometimes, a well-ordered set is called a totally well-ordered set, reflecting the fact that the ordering is a total ordering or linear ordering.

References

[a1] A. Levy, “Basic set theory”, Springer (1979).
How to Cite This Entry:
Well-ordered set. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Well-ordered_set&oldid=12987
This article was adapted from an original article by B.A. EfimovT.S. Fofanova (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article