Namespaces
Variants
Actions

Difference between revisions of "Weak solution"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
w0972401.png
 +
$#A+1 = 15 n = 0
 +
$#C+1 = 15 : ~/encyclopedia/old_files/data/W097/W.0907240 Weak solution
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''of a differential equation
 
''of a differential equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097240/w0972401.png" /></td> </tr></table>
+
$$ \tag{* }
 +
Lu  \equiv  \sum _ {| \alpha | \leq  m }
 +
a _  \alpha  ( x) D  ^  \alpha  u  = f
 +
$$
  
in a domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097240/w0972402.png" />''
+
in a domain $  D $''
  
A locally integrable function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097240/w0972403.png" /> satisfying the equation
+
A locally integrable function $  u $
 +
satisfying the equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097240/w0972404.png" /></td> </tr></table>
+
$$
 +
\int\limits _ { D } u  L  ^ {*} \phi  dx  = \int\limits _ { D } f \phi  dx
 +
$$
  
for all smooth functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097240/w0972405.png" /> (say, of class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097240/w0972406.png" />) with compact support in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097240/w0972407.png" />. Here, the coefficients <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097240/w0972408.png" /> in
+
for all smooth functions $  \phi $(
 +
say, of class $  C  ^  \infty  $)  
 +
with compact support in $  D $.  
 +
Here, the coefficients $  a _  \alpha  ( x) $
 +
in
  
are assumed to be sufficiently smooth and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097240/w0972409.png" /> stands for the formal Lagrange adjoint of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097240/w09724010.png" />:
+
are assumed to be sufficiently smooth and $  L  ^ {*} $
 +
stands for the formal Lagrange adjoint of $  L $:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097240/w09724011.png" /></td> </tr></table>
+
$$
 +
L  ^ {*} \phi  = \
 +
\sum _ {| \alpha | \leq  m } (- 1) ^ {| \alpha | }
 +
D  ^  \alpha  ( a _  \alpha  \phi ) .
 +
$$
  
For example, the generalized derivative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097240/w09724012.png" /> can be defined as the locally integrable function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097240/w09724013.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097240/w09724014.png" /> is a weak solution of the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097240/w09724015.png" />.
+
For example, the generalized derivative $  f = D  ^  \alpha  u $
 +
can be defined as the locally integrable function $  f $
 +
such that $  u $
 +
is a weak solution of the equation $  D  ^  \alpha  u = f $.
  
 
In considering weak solutions of , the following problem arises: under what conditions are they strong solutions (cf. [[Strong solution|Strong solution]])? For example, in the case of elliptic equations, every weak solution is strong.
 
In considering weak solutions of , the following problem arises: under what conditions are they strong solutions (cf. [[Strong solution|Strong solution]])? For example, in the case of elliptic equations, every weak solution is strong.
Line 21: Line 51:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.V. Bitsadze,  "Some classes of partial differential equations" , Gordon &amp; Breach  (1988)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.V. Bitsadze,  "Some classes of partial differential equations" , Gordon &amp; Breach  (1988)  (Translated from Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  S. Agmon,  "Lectures on elliptic boundary value problems" , v. Nostrand  (1965)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  D. Gilbarg,  N.S. Trudinger,  "Elliptic partial differential equations of second order" , Springer  (1983)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  S. Agmon,  "Lectures on elliptic boundary value problems" , v. Nostrand  (1965)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  D. Gilbarg,  N.S. Trudinger,  "Elliptic partial differential equations of second order" , Springer  (1983)</TD></TR></table>

Latest revision as of 08:28, 6 June 2020


of a differential equation

$$ \tag{* } Lu \equiv \sum _ {| \alpha | \leq m } a _ \alpha ( x) D ^ \alpha u = f $$

in a domain $ D $

A locally integrable function $ u $ satisfying the equation

$$ \int\limits _ { D } u L ^ {*} \phi dx = \int\limits _ { D } f \phi dx $$

for all smooth functions $ \phi $( say, of class $ C ^ \infty $) with compact support in $ D $. Here, the coefficients $ a _ \alpha ( x) $ in

are assumed to be sufficiently smooth and $ L ^ {*} $ stands for the formal Lagrange adjoint of $ L $:

$$ L ^ {*} \phi = \ \sum _ {| \alpha | \leq m } (- 1) ^ {| \alpha | } D ^ \alpha ( a _ \alpha \phi ) . $$

For example, the generalized derivative $ f = D ^ \alpha u $ can be defined as the locally integrable function $ f $ such that $ u $ is a weak solution of the equation $ D ^ \alpha u = f $.

In considering weak solutions of , the following problem arises: under what conditions are they strong solutions (cf. Strong solution)? For example, in the case of elliptic equations, every weak solution is strong.

References

[1] A.V. Bitsadze, "Some classes of partial differential equations" , Gordon & Breach (1988) (Translated from Russian)

Comments

References

[a1] S. Agmon, "Lectures on elliptic boundary value problems" , v. Nostrand (1965)
[a3] D. Gilbarg, N.S. Trudinger, "Elliptic partial differential equations of second order" , Springer (1983)
How to Cite This Entry:
Weak solution. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Weak_solution&oldid=12915
This article was adapted from an original article by A.P. Soldatov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article