Namespaces
Variants
Actions

Difference between revisions of "Wave front"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m
 
(2 intermediate revisions by one other user not shown)
Line 1: Line 1:
''wave front set, of a [[Generalized function|generalized function]] (distribution) or hyperfunction''
+
<!--
 +
w0971401.png
 +
$#A+1 = 98 n = 0
 +
$#C+1 = 98 : ~/encyclopedia/old_files/data/W097/W.0907140 Wave front,
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
A conical set in the cotangent bundle to the manifold on which the generalized function or hyperfunction in question is given, which characterizes its singularities. A hyperfunction is a sum of formal boundary values of holomorphic functions. Two such sums are identified if they are equivalent in the sense of equivalence given by an analogue of Bogolyubov's  "edge-of-the-wedge"  theorem (cf. [[Bogolyubov theorem|Bogolyubov theorem]]), in which, however, one in no sense assumes that the holomorphic functions in question have limits.
+
{{TEX|auto}}
 +
{{TEX|done}}
  
The wave front set of a hyperfunction is also often called the analytic wave front set or the singular support (the last term is more often used in a completely-different sense, when it denotes the complement to the set of some sort of regularity of the generalized function on the manifold itself, and not in the cotangent bundle). The concept of the wave front set lies behind micro-local analysis, which is a complex of ideas and methods using wave front sets and other related concepts and techniques (in particular, pseudo-differential operators and Fourier integral operators) for studying partial differential equations (mainly linear equations).
+
''wave front set, of a [[Generalized function|generalized function]] (distribution) or [[hyperfunction]]''
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w0971401.png" /> be a domain in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w0971402.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w0971403.png" />, that is, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w0971404.png" /> is a generalized function on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w0971405.png" />. Then the wave front set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w0971406.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w0971407.png" /> is the closed conical subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w0971408.png" /> defined as follows: If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w0971409.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714010.png" /> means that there is a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714011.png" />, equal to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714012.png" /> in a neighbourhood of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714013.png" />, and a conical neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714014.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714015.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714016.png" />, such that for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714017.png" />,
+
A conical set in the [[cotangent bundle]] to the manifold on which the generalized function or hyperfunction in question is given, which characterizes its [[singularity|singularities]]. A hyperfunction is a sum of formal boundary values of holomorphic functions. Two such sums are identified if they are equivalent in the sense of equivalence given by an analogue of Bogolyubov's "edge-of-the-wedge" theorem (cf. [[Bogolyubov theorem|Bogolyubov theorem]]), in which, however, one in no sense assumes that the holomorphic functions in question have limits.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714018.png" /></td> </tr></table>
+
The wave front set of a hyperfunction is also often called the analytic wave front set or the singular support (the last term is more often used in a completely different sense, when it denotes the complement to the set of some sort of regularity of the generalized function on the manifold itself, and not in the cotangent bundle). The concept of the wave front set lies behind [[micro-local analysis]], which is a complex of ideas and methods using wave front sets and other related concepts and techniques (in particular, [[pseudo-differential operators]] and [[Fourier integral operators]]) for studying partial differential equations (mainly linear equations).
 +
 
 +
Let  $  X $ be a domain in  $  \mathbf R  ^ {n} $ and let  $  u \in \mathcal D  ^  \prime  ( X) $,
 +
that is,  $  u $ is a generalized function on  $  X $.
 +
Then the wave front set  $  \mathop{\rm WF} ( u) $ of  $  u $
 +
is the closed conical subset of  $  T  ^ {*} X \setminus  0 = X \times ( \mathbf R  ^ {n} \setminus  0) $
 +
defined as follows: If  $  ( x _ {0} , \xi _ {0} ) \in X \times ( \mathbf R  ^ {n} \setminus  0) $,
 +
then  $  ( x _ {0} , \xi _ {0} ) \notin  \mathop{\rm WF} ( u) $
 +
means that there is a function  $  \phi \in C _ {0}  ^  \infty  ( X) $,
 +
equal to  $  1 $
 +
in a neighbourhood of  $  x _ {0} $,
 +
and a conical neighbourhood  $  \Gamma $
 +
of  $  \xi _ {0} $
 +
in  $  \mathbf R  ^ {n} \setminus  0 $,
 +
such that for every  $  N > 0 $,
 +
 
 +
$$
 +
| \widehat{ {\phi u }}  ( \xi ) |  \leq  C _ {N} ( 1 + | \xi | )  ^ {-N} ,\ \
 +
\xi \in \Gamma ,
 +
$$
  
 
where
 
where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714019.png" /></td> </tr></table>
+
$$
 +
C _ {N}  > 0,\ \
 +
\widehat{ {\phi u }}  ( \xi )  = \langle  u ( x), \phi ( x) e ^ {- ix \cdot \xi } \rangle ,
 +
$$
  
that is, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714020.png" /> is the Fourier transform of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714021.png" />.
+
that is, $  \widehat{ {\phi u }}  $
 +
is the [[Fourier transform]] of $  \phi u $.
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714022.png" /> is a manifold and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714023.png" /> is a generalized function on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714024.png" /> (or, more generally, a generalized section of a smooth vector bundle), then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714025.png" /> is defined in the same way as above (after transition to local coordinates). In this case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714026.png" /> turns out to be a well-defined conical subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714027.png" /> (the cotangent bundle without the zero section).
+
If $  X $
 +
is a manifold and $  u $
 +
is a generalized function on $  X $(
 +
or, more generally, a generalized section of a smooth vector bundle), then $  \mathop{\rm WF} ( u) $
 +
is defined in the same way as above (after transition to local coordinates). In this case $  \mathop{\rm WF} ( u) $
 +
turns out to be a well-defined conical subset of $  T  ^ {*} X \setminus  0 $(
 +
the cotangent bundle without the zero section).
  
One introduces the canonical projection <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714028.png" />. Then
+
One introduces the canonical projection $  \pi :  T  ^ {*} X \setminus  0 \rightarrow X $.  
 +
Then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714029.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
$$ \tag{1 }
 +
\pi (  \mathop{\rm WF} ( u)) =  \singsupp  u ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714030.png" /> is the complement of the largest open subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714031.png" /> on which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714032.png" /> coincides with an infinitely-differentiable function. This relationship shows that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714033.png" /> is actually a finer characteristic of the singularities of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714034.png" /> than <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714035.png" />.
+
where $  \singsupp  u $
 +
is the complement of the largest open subset of $  X $
 +
on which $  u $
 +
coincides with an infinitely-differentiable function. This relationship shows that $  \mathop{\rm WF} ( u) $
 +
is actually a finer characteristic of the singularities of $  u $
 +
than $  \singsupp  u $.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714036.png" /> be a [[Pseudo-differential operator|pseudo-differential operator]] of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714037.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714038.png" /> with principal symbol <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714039.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714040.png" /> be the set of its characteristic directions, that is,
+
Let $  A $
 +
be a [[Pseudo-differential operator|pseudo-differential operator]] of order $  m $
 +
on $  X $
 +
with principal symbol $  a _ {m} ( x, \xi ) $,  
 +
and let $  \mathop{\rm char}  A $
 +
be the set of its characteristic directions, that is,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714041.png" /></td> </tr></table>
+
$$
 +
\mathop{\rm char}  A  = \
 +
\{ {( x, \xi ) \in T  ^ {*} X \setminus  0 } : {a _ {m} ( x, \xi ) = 0 } \}
 +
.
 +
$$
  
 
Then
 
Then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714042.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$ \tag{2 }
 +
\mathop{\rm WF} ( Au)  \subset    \mathop{\rm WF} ( u)  \subset  \
 +
\mathop{\rm WF} ( Au) \cup  \mathop{\rm char}  A.
 +
$$
  
Here the first inclusion characterizes the pseudo-locality of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714043.png" />, and the second is a far-reaching generalization of the theorem on the smoothness of solutions of elliptic equations with smooth coefficients.
+
Here the first inclusion characterizes the pseudo-locality of $  A $,  
 +
and the second is a far-reaching generalization of the theorem on the smoothness of solutions of elliptic equations with smooth coefficients.
  
If the principal symbol <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714044.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714045.png" /> is real-valued, then the following theorem on the propagation of singularities holds: If one is given a connected piece <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714046.png" /> of a bicharacteristic (that is, a trajectory of the Hamiltonian vector field on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714047.png" /> with Hamiltonian <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714048.png" />) that does not intersect <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714049.png" />, then either <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714050.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714051.png" />.
+
If the principal symbol $  a _ {m} ( x, \xi ) $
 +
of $  A $
 +
is real-valued, then the following theorem on the propagation of singularities holds: If one is given a connected piece $  \gamma $
 +
of a bicharacteristic (that is, a trajectory of the Hamiltonian vector field on $  T  ^ {*} X \setminus  0 $
 +
with Hamiltonian $  a _ {m} $)  
 +
that does not intersect $  \mathop{\rm WF} ( Au) $,  
 +
then either $  \gamma \subset  \mathop{\rm WF} ( u) $
 +
or $  \gamma \cap  \mathop{\rm WF} ( u) = \emptyset $.
  
This theorem shows that the singularities of the solutions (that is, their wave front sets) of an equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714052.png" /> with a smooth right-hand side <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714053.png" /> propagate along the bicharacteristics of the principal symbol <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714054.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714055.png" /> (see [[#References|[3]]], [[#References|[4]]], [[#References|[8]]], [[#References|[11]]], [[#References|[12]]], [[#References|[16]]]).
+
This theorem shows that the singularities of the solutions (that is, their wave front sets) of an equation $  Au = f $
 +
with a smooth right-hand side $  f $
 +
propagate along the bicharacteristics of the principal symbol $  a _ {m} $
 +
of $  A $(
 +
see [[#References|[3]]], [[#References|[4]]], [[#References|[8]]], [[#References|[11]]], [[#References|[12]]], [[#References|[16]]]).
  
The analytic wave front set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714056.png" /> for a generalized function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714057.png" /> can be defined in one of the following three equivalent (see [[#References|[13]]]) ways (here, for simplicity, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714058.png" /> is a domain in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714059.png" />):
+
The analytic wave front set $  \mathop{\rm WF} _ {a} ( u) $
 +
for a generalized function $  u \in D  ^  \prime  ( X) $
 +
can be defined in one of the following three equivalent (see [[#References|[13]]]) ways (here, for simplicity, $  X $
 +
is a domain in $  \mathbf R  ^ {n} $):
  
1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714060.png" /> if there are a neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714061.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714062.png" />, open proper convex cones <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714063.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714064.png" /> and functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714065.png" />, holomorphic in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714066.png" />, such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714067.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714068.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714069.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714070.png" /> is the cone dual to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714071.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714072.png" /> is the boundary value of the holomorphic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714073.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714074.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714075.png" />, understood in the sense of weak convergence of generalized functions. This definition is also applicable to hyperfunctions if the boundary value is interpreted differently.
+
1) $  ( x _ {0} , \xi _ {0} ) \notin  \mathop{\rm WF} _ {a} ( u) $
 +
if there are a neighbourhood $  \omega $
 +
of $  x _ {0} $,  
 +
open proper convex cones $  \Gamma _ {1} \dots \Gamma _ {N} $
 +
in $  \mathbf R  ^ {n} $
 +
and functions $  f _ {j} $,  
 +
holomorphic in $  \omega + i \Gamma _ {j} $,  
 +
such that $  \xi _ {0} \notin \Gamma _ {j}  ^ {0} $,  
 +
$  j = 1 \dots N $,  
 +
and $  u = \sum _ {j = 1 }  ^ {N} b ( f _ {j} ) $,  
 +
where $  \Gamma _ {j}  ^ {0} $
 +
is the cone dual to $  \Gamma _ {j} $
 +
and $  b ( f _ {j} ) $
 +
is the boundary value of the holomorphic function $  f _ {j} ( x + iy) $
 +
for $  y \rightarrow 0 $,  
 +
$  y \in \Gamma _ {j} $,  
 +
understood in the sense of weak convergence of generalized functions. This definition is also applicable to hyperfunctions if the boundary value is interpreted differently.
  
 
2) Let
 
2) Let
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714076.png" /></td> </tr></table>
+
$$
 +
F _ {u} ( \xi , \lambda ; x)  = \
 +
\int\limits  \mathop{\rm exp}  [- iy \cdot \xi - \lambda  | y - x |  ^ {2} ] u ( y)  dy
 +
$$
  
(a generalized Fourier transform); then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714077.png" /> if and only if for any function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714078.png" /> that is analytic in a neighbourhood of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714079.png" /> there are a conical neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714080.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714081.png" /> and positive constants <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714082.png" /> such that
+
(a generalized Fourier transform); then $  ( x _ {0} , \xi _ {0} ) \notin  \mathop{\rm WF} ( u) $
 +
if and only if for any function $  \chi \in C _ {0}  ^  \infty  ( X) $
 +
that is analytic in a neighbourhood of $  x _ {0} $
 +
there are a conical neighbourhood $  \Gamma $
 +
of $  \xi _ {0} $
 +
and positive constants $  \alpha , \gamma , C _ {N} $
 +
such that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714083.png" /></td> </tr></table>
+
$$
 +
F _ {\chi u }  ( \xi , \lambda ; x _ {0} )  \leq  \
 +
C _ {N} ( 1 + | \xi | )  ^ {-N} e ^ {- \lambda \alpha } ,\ \
 +
\xi \in \Gamma ,\  0 < \lambda < \gamma | \xi | .
 +
$$
  
3) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714084.png" /> if and only if there are a neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714085.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714086.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714087.png" />, a bounded sequence of generalized functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714088.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714089.png" /> with compact support, and a constant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714090.png" />, such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714091.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714092.png" /> and
+
3) $  ( x _ {0} , \xi _ {0} ) \notin  \mathop{\rm WF} _ {a} ( u) $
 +
if and only if there are a neighbourhood $  \omega $
 +
of $  x _ {0} $
 +
in $  X $,  
 +
a bounded sequence of generalized functions $  u _ {k} $,
 +
$  k = 1, 2 \dots $
 +
with compact support, and a constant $  C > 0 $,  
 +
such that $  u _ {k} = u $
 +
in $  \omega $
 +
and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714093.png" /></td> </tr></table>
+
$$
 +
| {\widehat{u}  _ {k} } ( \xi ) |  \leq  \
 +
C ^ {k + 1 } k!  | \xi |  ^ {-k} ,\ \
 +
\xi \in \Gamma .
 +
$$
  
 
There is an analogue of the property (1) for the analytic wave front:
 
There is an analogue of the property (1) for the analytic wave front:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714094.png" /></td> </tr></table>
+
$$
 +
\pi (  \mathop{\rm WF} _ {a} ( u))  = \singsupp _ {a}  u ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714095.png" /> is the complement of the largest set on which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714096.png" /> is real-analytic. There is an analogue of the property (2), where one can take for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714097.png" /> a differential operator with real-analytic coefficients or an analytic pseudo-differential operator (see [[#References|[6]]], [[#References|[9]]], [[#References|[11]]], [[#References|[15]]], [[#References|[16]]]). For such an operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w097/w097140/w09714098.png" /> with a real principal symbol, a theorem on the propagation of the analytic wave front set holds, analogous to the theorem stated above for the ordinary wave front set (see [[#References|[11]]]).
+
where $  \singsupp _ {a}  u $
 +
is the complement of the largest set on which $  u $
 +
is real-analytic. There is an analogue of the property (2), where one can take for $  A $
 +
a differential operator with real-analytic coefficients or an analytic pseudo-differential operator (see [[#References|[6]]], [[#References|[9]]], [[#References|[11]]], [[#References|[15]]], [[#References|[16]]]). For such an operator $  A $
 +
with a real principal symbol, a theorem on the propagation of the analytic wave front set holds, analogous to the theorem stated above for the ordinary wave front set (see [[#References|[11]]]).
  
 
====References====
 
====References====
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> M. Sato,   "Hyperfunctions and partial differential equations" , ''Proc. 2nd Conf. Functional Anal. Related Topics'' , Tokyo Univ. Press (1969) pp. 91–94</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> L. Hörmander,   "Fourier integral operators I" ''Acta Math.'' , '''127''' (1971) pp. 79–183</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> J.J. Duistermaat,   L. Hörmander,   "Fourier integral operators II" ''Acta Math.'' , '''128''' (1972) pp. 183–269</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> J.J. Duistermaat,   "Fourier integral operators" , Courant Inst. Math. (1973)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> M.A. Shubin,   "Pseudo-differential operators and spectral theory" , Springer (1983) (Translated from Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> F. Trèves,   "Introduction to pseudo-differential and Fourier integral operators" , '''1–2''' , Plenum (1980)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> M.E. Taylor,   "Pseudo-differential operators" , Princeton Univ. Press (1981)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> L. Nirenberg,   "Lectures on linear partial differential equations" , Amer. Math. Soc. (1972)</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> M. Kashiwara,   "Microfunctions and pseudo-differential equations" H. Komatsu (ed.) , ''Hyperfunctions and pseudodifferential equations. Proc. Conf. Katata, 1971'' , ''Lect. notes in math.'' , '''287''' , Springer (1973) pp. 265–529</TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top"> P. Schapira,   "Théorie des hyperfonctions" , ''Lect. notes in math.'' , '''126''' , Springer (1970)</TD></TR><TR><TD valign="top">[11]</TD> <TD valign="top"> J. Sjöstrand,   "Singularités analytiques microlocales" , Univ. Paris-Sud (1982) ((Prepublication.))</TD></TR><TR><TD valign="top">[12]</TD> <TD valign="top"> R. Lascar,   "Propagation des singularités des solutions d'Aeequations pseudo-differentielles à caractéristiques de multiplicités variables" , Springer (1981)</TD></TR><TR><TD valign="top">[13]</TD> <TD valign="top"> J. Bony,   "Equivalence des diverses notions de spectre singulier analytique" ''Sém. Goulaouic–Schwartz'' , '''III''' (1976–1977)</TD></TR><TR><TD valign="top">[14a]</TD> <TD valign="top"> J. Bros,   D. Iagolnitzer,   "Tuboides et structure analytique des distributions I. Tuboides et généralisation d'un théorème de Grauert" ''Sém. Goulaouic–Lions–Schwartz'' , '''16''' (1974)</TD></TR><TR><TD valign="top">[14b]</TD> <TD valign="top"> J. Bros,   D. Iagolnitzer,   "Tuboides et structure analytique des distributions II. Support essential et structure analytique des distributions" ''Sém. Goulaouic–Lions–Schwartz'' , '''18''' (1975)</TD></TR><TR><TD valign="top">[15]</TD> <TD valign="top"> L. Hörmander,   "On the singularities of solutions of partial differential equations" ''Comm. Pure Appl. Math.'' , '''23''' (1970) pp. 329–358</TD></TR><TR><TD valign="top">[16]</TD> <TD valign="top"> L.V. Hörmander,   "The analysis of linear partial differential operators" , '''1–4''' , Springer (1983–1985)</TD></TR></table>
+
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> M. Sato, "Hyperfunctions and partial differential equations" , ''Proc. 2nd Conf. Functional Anal. Related Topics'' , Tokyo Univ. Press (1969) pp. 91–94 {{MR|0650826}} {{ZBL|0208.35801}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> L. Hörmander, "Fourier integral operators I" ''Acta Math.'' , '''127''' (1971) pp. 79–183 {{MR|0388463}} {{ZBL|0212.46601}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> J.J. Duistermaat, L. Hörmander, "Fourier integral operators II" ''Acta Math.'' , '''128''' (1972) pp. 183–269 {{MR|0388464}} {{ZBL|0232.47055}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> J.J. Duistermaat, "Fourier integral operators" , Courant Inst. Math. (1973) {{MR|0451313}} {{ZBL|0272.47028}} </TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> M.A. Shubin, "Pseudo-differential operators and spectral theory" , Springer (1983) (Translated from Russian)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> F. Trèves, "Introduction to pseudo-differential and Fourier integral operators" , '''1–2''' , Plenum (1980)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> M.E. Taylor, "Pseudo-differential operators" , Princeton Univ. Press (1981) {{MR|1567325}} {{ZBL|0289.35001}} {{ZBL|0207.45402}} </TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> L. Nirenberg, "Lectures on linear partial differential equations" , Amer. Math. Soc. (1972) {{MR|0450756}} {{MR|0450755}} {{ZBL|0267.35001}} </TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> M. Kashiwara, "Microfunctions and pseudo-differential equations" H. Komatsu (ed.) , ''Hyperfunctions and pseudodifferential equations. Proc. Conf. Katata, 1971'' , ''Lect. notes in math.'' , '''287''' , Springer (1973) pp. 265–529 {{MR|0420735}} {{ZBL|0277.46039}} </TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top"> P. Schapira, "Théorie des hyperfonctions" , ''Lect. notes in math.'' , '''126''' , Springer (1970) {{MR|0631543}} {{MR|0270151}} {{ZBL|0201.44805}} {{ZBL|0192.47305}} </TD></TR><TR><TD valign="top">[11]</TD> <TD valign="top"> J. Sjöstrand, "Singularités analytiques microlocales" , Univ. Paris-Sud (1982) ((Prepublication.)) {{MR|0699623}} {{ZBL|0524.35007}} </TD></TR><TR><TD valign="top">[12]</TD> <TD valign="top"> R. Lascar, "Propagation des singularités des solutions d'Aeequations pseudo-differentielles à caractéristiques de multiplicités variables" , Springer (1981)</TD></TR><TR><TD valign="top">[13]</TD> <TD valign="top"> J. Bony, "Equivalence des diverses notions de spectre singulier analytique" ''Sém. Goulaouic–Schwartz'' , '''III''' (1976–1977) {{MR|0650834}} {{ZBL|0367.46036}} </TD></TR><TR><TD valign="top">[14a]</TD> <TD valign="top"> J. Bros, D. Iagolnitzer, "Tuboides et structure analytique des distributions I. Tuboides et généralisation d'un théorème de Grauert" ''Sém. Goulaouic–Lions–Schwartz'' , '''16''' (1974) {{MR|0399493}} {{ZBL|}} </TD></TR><TR><TD valign="top">[14b]</TD> <TD valign="top"> J. Bros, D. Iagolnitzer, "Tuboides et structure analytique des distributions II. Support essential et structure analytique des distributions" ''Sém. Goulaouic–Lions–Schwartz'' , '''18''' (1975) {{MR|0399494}} {{ZBL|}} </TD></TR><TR><TD valign="top">[15]</TD> <TD valign="top"> L. Hörmander, "On the singularities of solutions of partial differential equations" ''Comm. Pure Appl. Math.'' , '''23''' (1970) pp. 329–358 {{MR|0262646}} {{ZBL|0193.06603}} {{ZBL|0191.10901}} {{ZBL|0188.40901}} </TD></TR><TR><TD valign="top">[16]</TD> <TD valign="top"> L.V. Hörmander, "The analysis of linear partial differential operators" , '''1–4''' , Springer (1983–1985) {{MR|2512677}} {{MR|2304165}} {{MR|2108588}} {{MR|1996773}} {{MR|1481433}} {{MR|1313500}} {{MR|1065993}} {{MR|1065136}} {{MR|0961959}} {{MR|0925821}} {{MR|0881605}} {{MR|0862624}} {{MR|1540773}} {{MR|0781537}} {{MR|0781536}} {{MR|0717035}} {{MR|0705278}} {{ZBL|1178.35003}} {{ZBL|1115.35005}} {{ZBL|1062.35004}} {{ZBL|1028.35001}} {{ZBL|0712.35001}} {{ZBL|0687.35002}} {{ZBL|0619.35002}} {{ZBL|0619.35001}} {{ZBL|0612.35001}} {{ZBL|0601.35001}} {{ZBL|0521.35002}} {{ZBL|0521.35001}} </TD></TR></table>
 
 
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> V. Guillemin,   S. Sternberg,   "Geometric asymptotics" , Amer. Math. Soc. (1977)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> V.I. Arnol'd,   "Singularities of caustics and wave fronts" , Kluwer (1990)</TD></TR></table>
+
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> V. Guillemin, S. Sternberg, "Geometric asymptotics" , Amer. Math. Soc. (1977) {{MR|0516965}} {{ZBL|0364.53011}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> V.I. Arnol'd, "Singularities of caustics and wave fronts" , Kluwer (1990) {{MR|}} {{ZBL|0734.53001}} </TD></TR></table>

Latest revision as of 18:55, 29 December 2021


wave front set, of a generalized function (distribution) or hyperfunction

A conical set in the cotangent bundle to the manifold on which the generalized function or hyperfunction in question is given, which characterizes its singularities. A hyperfunction is a sum of formal boundary values of holomorphic functions. Two such sums are identified if they are equivalent in the sense of equivalence given by an analogue of Bogolyubov's "edge-of-the-wedge" theorem (cf. Bogolyubov theorem), in which, however, one in no sense assumes that the holomorphic functions in question have limits.

The wave front set of a hyperfunction is also often called the analytic wave front set or the singular support (the last term is more often used in a completely different sense, when it denotes the complement to the set of some sort of regularity of the generalized function on the manifold itself, and not in the cotangent bundle). The concept of the wave front set lies behind micro-local analysis, which is a complex of ideas and methods using wave front sets and other related concepts and techniques (in particular, pseudo-differential operators and Fourier integral operators) for studying partial differential equations (mainly linear equations).

Let $ X $ be a domain in $ \mathbf R ^ {n} $ and let $ u \in \mathcal D ^ \prime ( X) $, that is, $ u $ is a generalized function on $ X $. Then the wave front set $ \mathop{\rm WF} ( u) $ of $ u $ is the closed conical subset of $ T ^ {*} X \setminus 0 = X \times ( \mathbf R ^ {n} \setminus 0) $ defined as follows: If $ ( x _ {0} , \xi _ {0} ) \in X \times ( \mathbf R ^ {n} \setminus 0) $, then $ ( x _ {0} , \xi _ {0} ) \notin \mathop{\rm WF} ( u) $ means that there is a function $ \phi \in C _ {0} ^ \infty ( X) $, equal to $ 1 $ in a neighbourhood of $ x _ {0} $, and a conical neighbourhood $ \Gamma $ of $ \xi _ {0} $ in $ \mathbf R ^ {n} \setminus 0 $, such that for every $ N > 0 $,

$$ | \widehat{ {\phi u }} ( \xi ) | \leq C _ {N} ( 1 + | \xi | ) ^ {-N} ,\ \ \xi \in \Gamma , $$

where

$$ C _ {N} > 0,\ \ \widehat{ {\phi u }} ( \xi ) = \langle u ( x), \phi ( x) e ^ {- ix \cdot \xi } \rangle , $$

that is, $ \widehat{ {\phi u }} $ is the Fourier transform of $ \phi u $.

If $ X $ is a manifold and $ u $ is a generalized function on $ X $( or, more generally, a generalized section of a smooth vector bundle), then $ \mathop{\rm WF} ( u) $ is defined in the same way as above (after transition to local coordinates). In this case $ \mathop{\rm WF} ( u) $ turns out to be a well-defined conical subset of $ T ^ {*} X \setminus 0 $( the cotangent bundle without the zero section).

One introduces the canonical projection $ \pi : T ^ {*} X \setminus 0 \rightarrow X $. Then

$$ \tag{1 } \pi ( \mathop{\rm WF} ( u)) = \singsupp u , $$

where $ \singsupp u $ is the complement of the largest open subset of $ X $ on which $ u $ coincides with an infinitely-differentiable function. This relationship shows that $ \mathop{\rm WF} ( u) $ is actually a finer characteristic of the singularities of $ u $ than $ \singsupp u $.

Let $ A $ be a pseudo-differential operator of order $ m $ on $ X $ with principal symbol $ a _ {m} ( x, \xi ) $, and let $ \mathop{\rm char} A $ be the set of its characteristic directions, that is,

$$ \mathop{\rm char} A = \ \{ {( x, \xi ) \in T ^ {*} X \setminus 0 } : {a _ {m} ( x, \xi ) = 0 } \} . $$

Then

$$ \tag{2 } \mathop{\rm WF} ( Au) \subset \mathop{\rm WF} ( u) \subset \ \mathop{\rm WF} ( Au) \cup \mathop{\rm char} A. $$

Here the first inclusion characterizes the pseudo-locality of $ A $, and the second is a far-reaching generalization of the theorem on the smoothness of solutions of elliptic equations with smooth coefficients.

If the principal symbol $ a _ {m} ( x, \xi ) $ of $ A $ is real-valued, then the following theorem on the propagation of singularities holds: If one is given a connected piece $ \gamma $ of a bicharacteristic (that is, a trajectory of the Hamiltonian vector field on $ T ^ {*} X \setminus 0 $ with Hamiltonian $ a _ {m} $) that does not intersect $ \mathop{\rm WF} ( Au) $, then either $ \gamma \subset \mathop{\rm WF} ( u) $ or $ \gamma \cap \mathop{\rm WF} ( u) = \emptyset $.

This theorem shows that the singularities of the solutions (that is, their wave front sets) of an equation $ Au = f $ with a smooth right-hand side $ f $ propagate along the bicharacteristics of the principal symbol $ a _ {m} $ of $ A $( see [3], [4], [8], [11], [12], [16]).

The analytic wave front set $ \mathop{\rm WF} _ {a} ( u) $ for a generalized function $ u \in D ^ \prime ( X) $ can be defined in one of the following three equivalent (see [13]) ways (here, for simplicity, $ X $ is a domain in $ \mathbf R ^ {n} $):

1) $ ( x _ {0} , \xi _ {0} ) \notin \mathop{\rm WF} _ {a} ( u) $ if there are a neighbourhood $ \omega $ of $ x _ {0} $, open proper convex cones $ \Gamma _ {1} \dots \Gamma _ {N} $ in $ \mathbf R ^ {n} $ and functions $ f _ {j} $, holomorphic in $ \omega + i \Gamma _ {j} $, such that $ \xi _ {0} \notin \Gamma _ {j} ^ {0} $, $ j = 1 \dots N $, and $ u = \sum _ {j = 1 } ^ {N} b ( f _ {j} ) $, where $ \Gamma _ {j} ^ {0} $ is the cone dual to $ \Gamma _ {j} $ and $ b ( f _ {j} ) $ is the boundary value of the holomorphic function $ f _ {j} ( x + iy) $ for $ y \rightarrow 0 $, $ y \in \Gamma _ {j} $, understood in the sense of weak convergence of generalized functions. This definition is also applicable to hyperfunctions if the boundary value is interpreted differently.

2) Let

$$ F _ {u} ( \xi , \lambda ; x) = \ \int\limits \mathop{\rm exp} [- iy \cdot \xi - \lambda | y - x | ^ {2} ] u ( y) dy $$

(a generalized Fourier transform); then $ ( x _ {0} , \xi _ {0} ) \notin \mathop{\rm WF} ( u) $ if and only if for any function $ \chi \in C _ {0} ^ \infty ( X) $ that is analytic in a neighbourhood of $ x _ {0} $ there are a conical neighbourhood $ \Gamma $ of $ \xi _ {0} $ and positive constants $ \alpha , \gamma , C _ {N} $ such that

$$ F _ {\chi u } ( \xi , \lambda ; x _ {0} ) \leq \ C _ {N} ( 1 + | \xi | ) ^ {-N} e ^ {- \lambda \alpha } ,\ \ \xi \in \Gamma ,\ 0 < \lambda < \gamma | \xi | . $$

3) $ ( x _ {0} , \xi _ {0} ) \notin \mathop{\rm WF} _ {a} ( u) $ if and only if there are a neighbourhood $ \omega $ of $ x _ {0} $ in $ X $, a bounded sequence of generalized functions $ u _ {k} $, $ k = 1, 2 \dots $ with compact support, and a constant $ C > 0 $, such that $ u _ {k} = u $ in $ \omega $ and

$$ | {\widehat{u} _ {k} } ( \xi ) | \leq \ C ^ {k + 1 } k! | \xi | ^ {-k} ,\ \ \xi \in \Gamma . $$

There is an analogue of the property (1) for the analytic wave front:

$$ \pi ( \mathop{\rm WF} _ {a} ( u)) = \singsupp _ {a} u , $$

where $ \singsupp _ {a} u $ is the complement of the largest set on which $ u $ is real-analytic. There is an analogue of the property (2), where one can take for $ A $ a differential operator with real-analytic coefficients or an analytic pseudo-differential operator (see [6], [9], [11], [15], [16]). For such an operator $ A $ with a real principal symbol, a theorem on the propagation of the analytic wave front set holds, analogous to the theorem stated above for the ordinary wave front set (see [11]).

References

[1] M. Sato, "Hyperfunctions and partial differential equations" , Proc. 2nd Conf. Functional Anal. Related Topics , Tokyo Univ. Press (1969) pp. 91–94 MR0650826 Zbl 0208.35801
[2] L. Hörmander, "Fourier integral operators I" Acta Math. , 127 (1971) pp. 79–183 MR0388463 Zbl 0212.46601
[3] J.J. Duistermaat, L. Hörmander, "Fourier integral operators II" Acta Math. , 128 (1972) pp. 183–269 MR0388464 Zbl 0232.47055
[4] J.J. Duistermaat, "Fourier integral operators" , Courant Inst. Math. (1973) MR0451313 Zbl 0272.47028
[5] M.A. Shubin, "Pseudo-differential operators and spectral theory" , Springer (1983) (Translated from Russian)
[6] F. Trèves, "Introduction to pseudo-differential and Fourier integral operators" , 1–2 , Plenum (1980)
[7] M.E. Taylor, "Pseudo-differential operators" , Princeton Univ. Press (1981) MR1567325 Zbl 0289.35001 Zbl 0207.45402
[8] L. Nirenberg, "Lectures on linear partial differential equations" , Amer. Math. Soc. (1972) MR0450756 MR0450755 Zbl 0267.35001
[9] M. Kashiwara, "Microfunctions and pseudo-differential equations" H. Komatsu (ed.) , Hyperfunctions and pseudodifferential equations. Proc. Conf. Katata, 1971 , Lect. notes in math. , 287 , Springer (1973) pp. 265–529 MR0420735 Zbl 0277.46039
[10] P. Schapira, "Théorie des hyperfonctions" , Lect. notes in math. , 126 , Springer (1970) MR0631543 MR0270151 Zbl 0201.44805 Zbl 0192.47305
[11] J. Sjöstrand, "Singularités analytiques microlocales" , Univ. Paris-Sud (1982) ((Prepublication.)) MR0699623 Zbl 0524.35007
[12] R. Lascar, "Propagation des singularités des solutions d'Aeequations pseudo-differentielles à caractéristiques de multiplicités variables" , Springer (1981)
[13] J. Bony, "Equivalence des diverses notions de spectre singulier analytique" Sém. Goulaouic–Schwartz , III (1976–1977) MR0650834 Zbl 0367.46036
[14a] J. Bros, D. Iagolnitzer, "Tuboides et structure analytique des distributions I. Tuboides et généralisation d'un théorème de Grauert" Sém. Goulaouic–Lions–Schwartz , 16 (1974) MR0399493
[14b] J. Bros, D. Iagolnitzer, "Tuboides et structure analytique des distributions II. Support essential et structure analytique des distributions" Sém. Goulaouic–Lions–Schwartz , 18 (1975) MR0399494
[15] L. Hörmander, "On the singularities of solutions of partial differential equations" Comm. Pure Appl. Math. , 23 (1970) pp. 329–358 MR0262646 Zbl 0193.06603 Zbl 0191.10901 Zbl 0188.40901
[16] L.V. Hörmander, "The analysis of linear partial differential operators" , 1–4 , Springer (1983–1985) MR2512677 MR2304165 MR2108588 MR1996773 MR1481433 MR1313500 MR1065993 MR1065136 MR0961959 MR0925821 MR0881605 MR0862624 MR1540773 MR0781537 MR0781536 MR0717035 MR0705278 Zbl 1178.35003 Zbl 1115.35005 Zbl 1062.35004 Zbl 1028.35001 Zbl 0712.35001 Zbl 0687.35002 Zbl 0619.35002 Zbl 0619.35001 Zbl 0612.35001 Zbl 0601.35001 Zbl 0521.35002 Zbl 0521.35001

Comments

References

[a1] V. Guillemin, S. Sternberg, "Geometric asymptotics" , Amer. Math. Soc. (1977) MR0516965 Zbl 0364.53011
[a2] V.I. Arnol'd, "Singularities of caustics and wave fronts" , Kluwer (1990) Zbl 0734.53001
How to Cite This Entry:
Wave front. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Wave_front&oldid=18893
This article was adapted from an original article by M.A. Shubin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article