Namespaces
Variants
Actions

Difference between revisions of "Vinogradov method"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
(Started TeX)
Line 3: Line 3:
 
One distinguishes two parts in Vinogradov's method: The method of estimating Weyl sums (cf. [[Weyl sum|Weyl sum]]) and the method of estimating trigonometric sums with prime numbers. Both these parts utilize Vinogradov's basic idea — to wit, the idea of smoothing double trigonometric sums, which may be described as follows. Given the sum
 
One distinguishes two parts in Vinogradov's method: The method of estimating Weyl sums (cf. [[Weyl sum|Weyl sum]]) and the method of estimating trigonometric sums with prime numbers. Both these parts utilize Vinogradov's basic idea — to wit, the idea of smoothing double trigonometric sums, which may be described as follows. Given the sum
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v0966901.png" /></td> </tr></table>
+
\[ W=\sum_u\sum_v\psi_1(u)\psi_2(v) e^{2\pi i\alpha uv},\]
  
where the summation variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v0966902.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v0966903.png" /> run through the values of (not necessarily successive) integers in respective sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v0966904.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v0966905.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v0966906.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v0966907.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v0966908.png" /> be arbitrary complex-valued functions. Then
+
where the summation variables $u$ and $v$ run through the values of (not necessarily successive) integers in respective sets $U$ and $V$, $A<u<2A$. Let $\psi_1(u)$ and $\psi_2(v)$ be arbitrary complex-valued functions. Then
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v0966909.png" /></td> </tr></table>
+
\[ \lvert W\rvert^2\leq B\sum_{A< u\leq 2A}\left\lvert \sum_v\psi_2(v)e^{2\pi i\alpha uv}\right\rvert^2,\]
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669010.png" /> runs through the successive integers in the interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669011.png" /> (smoothing), and
+
where $u$ runs through the successive integers in the interval $(A,2A]$ (smoothing), and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669012.png" /></td> </tr></table>
+
\[ B=\sum_n\lvert \psi_1(u)\rvert^2.\]
  
 
==Vinogradov's method for estimating Weyl sums.==
 
==Vinogradov's method for estimating Weyl sums.==
 
The sums to be estimated are
 
The sums to be estimated are
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669013.png" /></td> </tr></table>
+
\[ S=\sum_{1\leq x\leq P}e^{2\pi if(x)},\]
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669014.png" />; here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669015.png" /> are real numbers. For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669016.png" /> one finds
+
where $f(x)=\alpha_{n+1}x^{n+1}+\cdots+\alpha_1x$; here $\alpha_{n+1},\ldots,\alpha_1$ are real numbers. For $Y=[P^{1-n^2/4}]$ one finds
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669017.png" /></td> </tr></table>
+
\begin{align*}
 +
S&=Y^{-1}\sum_{1\leq x\leq P}\sum_{1\leq y\leq Y}e^{2\pi if(x+y)}+2\theta Y\\
 +
&=Y^{-1}\sum_{1\leq x\leq P}\sum_{1\leq y\leq Y}e^{2\pi i\mathfrak{A}}+2\theta Y=Y^{-1}W+2\theta Y,\]
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669018.png" /></td> </tr></table>
+
where $\mathfrak{A}=\alpha_{n+1}x^{n+1}+A_n(y)x^n+\cdots+A_1(y)x+A_0(y)$, the letter $W$ denotes the double sum over $x$ and $y$, and $\lvert \theta\rvert\leq 1$. Moreover, letting $\mathfrak{B}$ denote the expression
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669019.png" />, the letter <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669020.png" /> denotes the double sum over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669021.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669022.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669023.png" />. Moreover, letting <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669024.png" /> denote the expression
+
\[ \alpha_{n+1}x^{n+1}+(A_n(y)+B_n)x^n+\cdots+(A_1(y)+B_1)x\]
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669025.png" /></td> </tr></table>
 
  
 
one has
 
one has
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669026.png" /></td> </tr></table>
+
\[\lvert W\rvert\leq \sum_{1\leq y\leq Y}\left\lvert \sum_{1\leq x\leq P}e^{2\pi i\mathfrak{B}}\right\rvert+Y_nP^{1-n^2/4},\]
 
 
for arbitrary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669027.png" /> from the domain
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669028.png" /></td> </tr></table>
 
 
 
For any integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669029.png" />:
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669030.png" /></td> </tr></table>
 
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669031.png" /></td> </tr></table>
+
for arbitrary $B_n,\ldots,B_1$ from the domain
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669032.png" /></td> </tr></table>
+
\[\lvert B_n\rvert\leq L_n=P^{-n-n^2/4},\textrm{\,\,\,\,\,}\ldots\textrm{\,\,\,\,}\lvert B_1\rvert\leq L_1=P^{-1-n^2/4}.\]
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669033.png" /></td> </tr></table>
+
For any integer $k\geq 1$:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669034.png" /></td> </tr></table>
+
\[ \lvert W\rvert^{2k}\leq 2^kY^{2k-1}\sum_{1\leq y\leq Y}\int_{\lvert B_n\rvert\leq L_n}\cdots \int_{\lvert B_1\rvert\leq L_1}
 +
\left\lvert \sum_{1\leq x\leq P} e^{2\pi i\mathfrak{B}}\right\rvert\mathrm{d}B_n\cdots\mathrm{d}B_1
 +
+2^k(Y_nP^{1-n^2/4})^{2k}\]
 +
\[\leq 2^kY^{2k-1}G(Y)\int_0^1\cdots \int_0^1\left\lvert \sum_{1\leq x\leq P}e^{2\pi i\mathfrak{C}}\right\rvert^{2k}
 +
\mathrm{d}\gamma_n\cdots\mathrm{d}\gamma_1+2^k(Y_nP^{1-n^2/4})^{2k},\]
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669035.png" /></td> </tr></table>
+
where $\mathfrak{C}=\alpha_{n+1}x^{n+1}+\gamma_nx^n+\cdots+\gamma_1x$ and $G(Y)$ is the maximum number of cases of coincidence of points with coordinates
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669036.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669037.png" /> is the maximum number of cases of coincidence of points with coordinates
+
\[ \{A_n(y)+B_n\},\{A_{n-1}(y)+B_{n-1}\},\ldots,\{A_1(y)+B_1\}.\]
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669038.png" /></td> </tr></table>
 
  
Here the braces denote the fractional part of the enclosed number, while <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669039.png" /> varies between 1 and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669040.png" />, and
+
Here the braces denote the fractional part of the enclosed number, while $y$ varies between 1 and $Y$, and
  
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669041.png" /></td> </tr></table>
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/v/v096/v096690/v09669041.png" /></td> </tr></table>

Revision as of 08:17, 17 June 2013

A new method for estimating trigonometric sums (see Trigonometric sums, method of). By Vinogradov's method one may obtain very accurate estimates of a wide class of trigonometric sums, in which the summation variable runs through a sequence of integers, prime numbers, etc. In this way many classical problems in analytic number theory can be solved (the distribution of the fractional parts of a wide class of functions, the distribution of prime numbers in series of natural numbers, additive problems such as the Waring and Goldbach problems, etc.).

One distinguishes two parts in Vinogradov's method: The method of estimating Weyl sums (cf. Weyl sum) and the method of estimating trigonometric sums with prime numbers. Both these parts utilize Vinogradov's basic idea — to wit, the idea of smoothing double trigonometric sums, which may be described as follows. Given the sum

\[ W=\sum_u\sum_v\psi_1(u)\psi_2(v) e^{2\pi i\alpha uv},\]

where the summation variables $u$ and $v$ run through the values of (not necessarily successive) integers in respective sets $U$ and $V$, $A<u<2A$. Let $\psi_1(u)$ and $\psi_2(v)$ be arbitrary complex-valued functions. Then

\[ \lvert W\rvert^2\leq B\sum_{A< u\leq 2A}\left\lvert \sum_v\psi_2(v)e^{2\pi i\alpha uv}\right\rvert^2,\]

where $u$ runs through the successive integers in the interval $(A,2A]$ (smoothing), and

\[ B=\sum_n\lvert \psi_1(u)\rvert^2.\]

Vinogradov's method for estimating Weyl sums.

The sums to be estimated are

\[ S=\sum_{1\leq x\leq P}e^{2\pi if(x)},\]

where $f(x)=\alpha_{n+1}x^{n+1}+\cdots+\alpha_1x$; here $\alpha_{n+1},\ldots,\alpha_1$ are real numbers. For $Y=[P^{1-n^2/4}]$ one finds

\begin{align*} S&=Y^{-1}\sum_{1\leq x\leq P}\sum_{1\leq y\leq Y}e^{2\pi if(x+y)}+2\theta Y\\ &=Y^{-1}\sum_{1\leq x\leq P}\sum_{1\leq y\leq Y}e^{2\pi i\mathfrak{A}}+2\theta Y=Y^{-1}W+2\theta Y,\]

where $\mathfrak{A}=\alpha_{n+1}x^{n+1}+A_n(y)x^n+\cdots+A_1(y)x+A_0(y)$, the letter $W$ denotes the double sum over $x$ and $y$, and $\lvert \theta\rvert\leq 1$. Moreover, letting $\mathfrak{B}$ denote the expression

\[ \alpha_{n+1}x^{n+1}+(A_n(y)+B_n)x^n+\cdots+(A_1(y)+B_1)x\]

one has

\[\lvert W\rvert\leq \sum_{1\leq y\leq Y}\left\lvert \sum_{1\leq x\leq P}e^{2\pi i\mathfrak{B}}\right\rvert+Y_nP^{1-n^2/4},\]

for arbitrary $B_n,\ldots,B_1$ from the domain

\[\lvert B_n\rvert\leq L_n=P^{-n-n^2/4},\textrm{\,\,\,\,\,}\ldots\textrm{\,\,\,\,}\lvert B_1\rvert\leq L_1=P^{-1-n^2/4}.\]

For any integer $k\geq 1$:

\[ \lvert W\rvert^{2k}\leq 2^kY^{2k-1}\sum_{1\leq y\leq Y}\int_{\lvert B_n\rvert\leq L_n}\cdots \int_{\lvert B_1\rvert\leq L_1} \left\lvert \sum_{1\leq x\leq P} e^{2\pi i\mathfrak{B}}\right\rvert\mathrm{d}B_n\cdots\mathrm{d}B_1 +2^k(Y_nP^{1-n^2/4})^{2k}\] \[\leq 2^kY^{2k-1}G(Y)\int_0^1\cdots \int_0^1\left\lvert \sum_{1\leq x\leq P}e^{2\pi i\mathfrak{C}}\right\rvert^{2k} \mathrm{d}\gamma_n\cdots\mathrm{d}\gamma_1+2^k(Y_nP^{1-n^2/4})^{2k},\]

where $\mathfrak{C}=\alpha_{n+1}x^{n+1}+\gamma_nx^n+\cdots+\gamma_1x$ and $G(Y)$ is the maximum number of cases of coincidence of points with coordinates

\[ \{A_n(y)+B_n\},\{A_{n-1}(y)+B_{n-1}\},\ldots,\{A_1(y)+B_1\}.\]


Here the braces denote the fractional part of the enclosed number, while $y$ varies between 1 and $Y$, and

If the coefficients of the polynomial have certain arithmetical properties, it is possible to obtain the estimate . In addition, the last integral does not exceed the number of solutions of the system of equations:

The number of solutions of this system is estimated using the Vinogradov theorem about the average, which is fundamental in Vinogradov's method for estimating Weyl sums (cf. Vinogradov estimates).

Vinogradov's method for estimating trigonometric sums with prime numbers.

The sums to be estimated are

where , and are real numbers. Let , where . Using the well-known property of the Möbius function, is reduced to a small number of sums (this number is not larger than ) of the form

where . In the multiple sum the variables run through the entire summation intervals. The sums in which the summation interval over at least one variable is long are estimated by Vinogradov's method for estimating Weyl sums. Otherwise the summation interval over one of the summation variables , , will be long. In such a case one uses the following lemma of Vinogradov which, together with the idea of smoothing double sums, is fundamental to Vinogradov's method for estimating trigonometric sums with prime numbers.

Lemma. Let and let be the product of all primes not larger than ; all divisors of not larger than may then be distributed over fewer than sets with the following properties:

1) the numbers belonging to one of these sets have the same number of prime factors and therefore the same value of ;

2) one of these sets — the so-called simplest set — consists of the single number . For each of the remaining sets there is a number such that all numbers of this set satisfy the relation

3) for each set of numbers other than the simplest set there exist, for any , , two sets of numbers and , with corresponding numbers and satisfying the relations

and such that, for a certain natural number , one obtains each number in the chosen set times if, out of all the products one selects only those which satisfy the relation .

The application of point 3) of this lemma, with a suitable value of , yields

where the variables and run through long summation intervals. It is possible to deduce Vinogradov's estimate for trigonometric sums with prime numbers from this lemma (cf. Vinogradov estimates).

If can be properly approximated, in a certain sense, by a polynomial, Vinogradov's method can be used to estimate sums of the type

(see [2], ). Sums of the type

and other types can also be estimated by the method. It is possible in this way to solve problems on the distribution of power residues, primitive roots, etc., in sequences of the type , where is a given integer, while runs through the successive prime numbers [3], [5]. For the application of Vinogradov's method in analytic number theory see [1], [2], , [5], [6].

References

[1] I.M. Vinogradov, "The method of trigonometric sums in the theory of numbers" , Interscience (1954) (Translated from Russian)
[2] I.M. Vinogradov, "Selected works" , Springer (1985) (Translated from Russian)
[3] I.M. Vinogradov, "Estimates of a sum, distribution of primes in an arithmetic series" Izv. Akad. Nauk SSSR Ser. Mat. , 30 (1966) pp. 481–496 (In Russian)
[4a] A.A. Karatsuba, "Estimates for trigonometric sums by Vinogradov's method, and applications" Proc. Steklov Inst. Math. , 112 (1971) pp. 251–265 Trudy Mat. Inst. Steklov. , 112 (1971) pp. 241–255
[4b] A.A. Karatsuba, "On some problems of prime number theory connected with I.M. Vinogradov's method" Proc. Steklov Inst. Math. , 132 (1973) pp. 293–298 Trudy Mat. Inst. Steklov. , 132 (1973) pp. 257–261
[5] L.-K. Hua, "Abschätzungen von Exponentialsummen und ihre Anwendung in der Zahlentheorie" , Enzyklopaedie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen , 1 : 2 (1959) (Heft 13, Teil 1)
[6] K. Chandrasekharan, "Arithmetical functions" , Springer (1970)


Comments

References

[a1] R.C. Vaughan, "The Hardy–Littlewood method" , Cambridge Univ. Press (1981)
How to Cite This Entry:
Vinogradov method. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Vinogradov_method&oldid=12709
This article was adapted from an original article by A.A. Karatsuba (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article