Namespaces
Variants
Actions

Vietoris-Begle theorem

From Encyclopedia of Mathematics
Revision as of 17:45, 1 July 2020 by Maximilian Janisch (talk | contribs) (Automatically changed introduction)
Jump to: navigation, search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

One of the most important results in algebraic topology connecting homological (topological) characteristics of topological Hausdorff spaces $X$, $Y$ (cf. also Hausdorff space) and a continuous mapping $f : X \rightarrow Y$; it has applications, for example, in the fixed-point theory for mappings. There are variants of this theorem depending on the choice of the (co)homology functor $H_{*}$ (respectively, $H ^ { * }$) when studying homomorphisms $f _{*} : H * ( X ) \rightarrow H_{ *} ( Y )$ (respectively, $f ^ { * } : H ^ { * } ( Y ) \rightarrow H ^ { * } ( X )$; see [a1], [a2] and algebraic topology for the necessary constructions and definitions).

For the functor $H _ * (\, . \, ; G )$, where $G$ is a group of coefficients, one defines $q$-acyclicity of a set $M \subset X$ by $H _ { q } ( M , G ) = 0$, for $q > 0$, $H _ { 0 } ( M , G ) \cong G$ for $q = 0$ (and similarly for the functor $H ^ { * }$). If $M$ is $q$-acyclic for all $q \geq 0$, then $M$ is said to be acyclic.

The simplest variant of the Vietoris–Begle theorem (close to [a3]) is as follows. Let $X$, $Y$ be compact Hausdorff spaces, let $H_{*} ( X , \mathbf{Q} )$ be the Aleksandrov–Čech homology functor (over the field $\mathbf{Q}$ of rational numbers; cf. also Aleksandrov–Čech homology and cohomology), let the mapping of compact pairs $f : ( X , X _ { 0 } ) \rightarrow ( Y , Y _ { 0 } )$ have non-empty acyclic pre-images $f ^ { - 1 } ( y )$ for any $y \in Y$ and let $f ^ { - 1 } ( Y _ { 0 } ) = X _ { 0 }$; then the induced homomorphisms $f_{*} : H _ { q } ( X , X _ { 0 } ) \rightarrow H _ { q } ( Y , Y _ { 0 } )$, $q \geq 0$, are isomorphisms (cf. also Homomorphism; Isomorphism). This result is also valid if one drops the condition of compactness of spaces and pairs and replaces it by the condition that $f$ be a proper mapping (cf. also Proper morphism) [a4].

For the Aleksandrov–Kolmogorov functor $\overline { H } \square ^ { * }$ in the category of paracompact Hausdorff spaces and a bounded continuous surjective mapping $f : X \rightarrow Y$ one studies the cohomology homomorphism $f ^ { * } : \overline { H } \square ^ { * } ( Y , G ) \rightarrow \overline { H } \square ^ { * } ( X , G )$, where $G$ is an $\mathbf{R}$-module. If the pre-image $f ^ { - 1 } ( y )$, for any $y \in Y$, is $q$-acyclic for all $q < n$ (for a fixed $n > 0$), then the homomorphism $f ^ { * } : \overline { H } \square ^ { q } ( Y , G ) \rightarrow \overline { H } \square ^ { q } ( X , G )$ is an isomorphism for $q < n$ and it is a monomorphism for $q = n$ [a2]. In the case of locally compact spaces $X$, $Y$, the statement is valid for cohomologies $\overline { H } \square _ { c } ^ { * }$ with compact supports under the additional condition that $f$ be a proper mapping (cf. also Proper morphism) [a2].

In the case of metric spaces $X$, $Y$, the requirement that the pre-images $f ^ { - 1 } ( y )$ be $q$-acyclic at all points $y \in Y$ can be weakened in that one allows sets $M _ { k } ( f ) \subset Y$ for which the $k$-acyclicity property is broken: $H ^ { k } ( f ^ { - 1 } ( y ) , G ) \neq 0$ ($k > 0$), $H ^ { 0 } ( f ^ { - 1 } ( y ) , G ) \notin G$ ($k = 0$), where $G$ is the group of coefficients. One defines the relative dimension of $M _ { k }$ in $Y$, $d _ { k } = \operatorname{rd} _ { Y } M _ { k }$ as the supremum of $\operatorname { dim } Q$, where $Q \subset M _ { k }$ runs over the subsets bounded in $Y$. One defines a "weight measure" of $M _ { k }$ in $Y$ by

\begin{equation*} \nu = \operatorname { max } _ { 0 \leq k \leq N - 1 } ( d _ { k } + k ). \end{equation*}

If $\nu < N - 1$, then the homomorphism $f ^ { * } : H ^ { q } ( Y , G ) \rightarrow H ^ { q } ( X , G )$ is [a5]:

for $q = \nu + 1$ an epimorphism;

for $\nu + 1 < q < N$ an isomorphism; and

for $q = N$ a monomorphism. A mapping $f : X \rightarrow Y$ is said to be an $n$-Vietoris mapping ($n \geq 1$) if $f$ is a proper, surjective and $\operatorname { rd } _{Y} ( M _ { k } (\, f ) ) \leq n - 2 - k $ for all [a4]. From the previous statement it follows that for an $n$-Vietoris mapping $f : X \rightarrow Y$ the homomorphism $f ^ { * } : H ^ { q } ( Y , G ) \rightarrow H ^ { q } ( X , G )$ is an isomorphism for $q \geq n$. For a $1$-Vietoris mapping, $H ^ { 0 } ( f ^ { - 1 } ( y ) , G ) = G , H ^ { q } ( f ^ { - 1 } ( y ) , G ) = 0$, for all $q > 0$, i.e. all the pre-images $f ^ { - 1 } ( y )$ are acyclic; such mappings are called Vietoris mappings.

Fixed-point theory.

Vietoris–Begle-type theorems are connected with the problem of equality, $f ( x ) = g ( x )$, for some $x$, with the problem of coincidence of pairs $( f , g )$ of mappings $f , g : X \rightarrow Y$, and with the fixed-point problem for set-valued mappings (see, for example, [a6], [a7], [a8], [a4], [a9], [a10], [a11], [a13]).

In fact, the set-valued mapping $G = f \circ g ^ { - 1 } : Y \rightarrow Y$, where $g$ is a surjection, gives a connection between the two problems: a point $x _ { 0 }$ at which $f$ and $g$ coincide, defines a fixed point $y _ { 0 } = g ( x _ { 0 } )$ for $G$ ($y _ { 0 } \in G ( y _ { 0 } )$), and vice versa; in fact, if $y _ { 0 } \in \operatorname{Fix} G$, then $f$ is equal to $g$ at any point $x _ { 0 } \in g ^ { - 1 } ( y _ { 0 } )$.

For general set-valued mappings $F : X \rightarrow X$ it is easy to construct a corresponding pair: consider the graph of the set-valued mapping $F$,

\begin{equation*} \Gamma ( F ) = \{ ( x , y ) \in X \times X : y \in F ( x ) \} \end{equation*}

and its Cartesian projections $p ( x , y ) = x$, $q ( x , y ) = y$. One obtains the pair $( p , q ) : \Gamma ( F ) \rightarrow X$, for which a point of coincidence $( x _ { 0 } , y _ { 0 } ) \in \Gamma ( F )$, $p ( x _ { 0 } , y _ { 0 } ) = q ( x _ { 0 } , y _ { 0 } )$, defines a fixed point $x _ { 0 } \in F ( x _ { 0 } )$ of the set-valued mapping $F$.

Topological characteristics.

Topological characteristics such as the Lefschetz number, the Kronecker characteristic, the rotation of the vector field (M.A. Krasnoselskii), the Brouwer–Hopf degree, are well known for single-valued mappings in finite-dimensional spaces (see, for example, [a12]). Analogous characteristics for general set-valued mappings $F$ have been constructed on the basis of homomorphisms $( p _ {*} , q _ { * } )$, (respectively, $( p ^ { * } , q ^ { * } )$) of (co)homology groups of the pair $( p , q )$ for $F$. These set-valued mappings satisfy the general conditions of compactness of images and have the property of upper semi-continuity. However, there is also a homological condition for a mapping $F$ to be $n$-Vietoris, ensuring an isomorphism $p_{ *}$ (respectively, $p ^ { * }$) in homology (cohomology) of dimension $q \geq n$, and permitting one to construct a homomorphism $F_{*}$ (respectively, $F ^ { * }$), generated by the set-valued mapping in (co)homology by the formula $F * = q * p * ^ { - 1 }$ (respectively, $F ^ { * } = p ^ { * - 1} q ^ { * }$).

S. Eilenberg and D. Montgomery [a6] have generalized the classical construction of the Lefschetz number to set-valued upper semi-continuous mappings $F : X \rightarrow X$ with acyclic images, where $X$ is compact metric ANR-space:

\begin{equation*} \Lambda ( F ) = \sum _ { n = 0 } ^ { \infty } ( - 1 ) ^ { n } \operatorname { tr } ( r _n* \circ t_n * ^ { - 1 } ); \end{equation*}

here, $F = r \circ t ^ { - 1 }$ is a canonical decomposition of $F$, where are homomorphisms and $t _ { n_{*} }$ is an isomorphism for any $n \geq 0$ (due to the Vietoris–Begle theorem). If $\Lambda ( F ) \neq \theta$, then $\operatorname {Fix} F \neq \emptyset$. This result was generalized by many authors (see [a9], [a10], [a4], [a7]). These generalizations involve weaker conditions of acyclicity, as well as certain different variants.

Degree theory.

To describe the topological characteristics of set-valued mappings $F$ like the degree $\operatorname { deg } F$ or the Kronecker characteristics $\gamma ( F )$ some definitions are needed. Let $X$, $Y$, $Z$ be separable topological spaces (cf. also Separable space), let $K ( Y )$ be the space of compact subsets, and suppose the set-valued mapping $F : X \rightarrow K ( Y )$ is upper semi-continuous. Such a mapping is called

$n$-acyclic if $\operatorname { rd }_{X} ( N _ { K } ( F ) ) \leq n - k - 2$ for all (here, $N _ { K } ( F ) \subset X$ is the set of points $x$ at which the $k$-acyclicity of the images $F ( x )$ is broken);

$F$-acyclic if it is $1$-acyclic; this is equivalent to acyclicity of every image $F ( x )$. A mapping $F : X \rightarrow K ( Y )$ is called generally $n$-acyclic if there exist a space $Z$ and single-valued continuous mappings $p : Z \rightarrow X$, $q : Z \rightarrow Y$, where $p$ is $n$-Vietoris and $q \circ p ^ { - 1 } ( x ) \subset F ( x )$ for all $x \in X$. The collection $\{ X , Y , Z , p , q \}$ is then said to be a representation of the set-valued mapping $F$, the pair $( p , q )$ is called a selecting pair, and the mapping $q \circ p ^ { - 1 }$ is called a selector of $F$. For an $n$-acyclic mapping $F$, the projections of the graph $t : X \times Y \supset \Gamma ( F ) \rightarrow X$, $r : X \times Y \supset \Gamma ( F ) \rightarrow Y$ give a selecting pair:

\begin{equation*} F ( x ) = r \circ t ^ { - 1 } ( x ). \end{equation*}

As an example, consider the main construction of the degree of a mapping $F : \overline { D } \square ^ { n + 1 } \rightarrow K ( E ^ { n + 1 } )$ from the unit disc $\overline { D } \square ^ { n + 1 } \subset E ^ { n + 1 }$ in the Euclidean space $E ^ { n + 1}$ under the condition that $F : S ^ { n } \rightarrow K ( E ^ { n + 1 } \backslash \theta )$, where $S ^ { n } = \partial \overline { D } \square ^ { n + 1 }$, is $m$-acyclic, $1 \leq m \leq n$. A generalization of the Vietoris–Begle theorem given by E.G. Sklyarenko ensures the existence of cohomology isomorphisms $t ^ { * } : H ^ { n } ( S ^ { n } ) \rightarrow H ^ { n } ( \Gamma _ { S ^ { n } } )$, $\hat { t } \square ^ { * } : H ^ { n + 1 } ( \overline { D } \square ^ { n + 1 } , S ^ { n } ) \rightarrow H ^ { n + 1 } ( \Gamma _ { \overline{D} \square ^ { n + 1 } } , \Gamma _ { S ^ { n } } )$ over the group $\bf Z$. Then $\operatorname { deg } ( F , \overline { D } \square ^ { n + 1 } , \theta ) = k$, where $k$ is given by the equality $( t ^ { * } ) ^ { - 1 } \circ ( t - r ) ^ { * } \beta _ { 1 } = k \beta _ { 2 }$. Here, $\beta _ { 1 }$, respectively $\beta_2$, is a generator of the group $H ^ { n } ( E ^ { n + 1 } \backslash \theta )$, respectively $H ^ { n } ( S ^ { n } )$, which is isomorphic to $\bf Z$, and $( t - r ) : ( \Gamma _ { S ^ { n } } ) \rightarrow ( E ^ { n + 1 } \backslash 0 )$ (a construction given by D.G. Bourgin, L. Górniewicz, and others, see [a9], [a10], [a4]). If the mapping $F : X \rightarrow K ( Y )$ under consideration is generally acyclic, then for every selecting pair $( p , q ) \subset F$ the set-valued mapping (the selector of $F$) $G = p \circ q ^ { - 1 } : X \rightarrow K ( Y )$ is $m$-acyclic, and for it $r = p$, $t = q$; applying the previous construction for the selector $G$ of the set-valued mapping $F : ( \overline { D } \square ^ { n + 1 } , S ^ { n } ) \rightarrow ( K ( E ^ { n + 1 } ) , K ( E ^ { n + 1 } \backslash \theta ) )$, one obtains $\operatorname { deg } ( G , \overline { D } \square ^ { n + 1 } , \theta )$ for any selector $G$. The generalized degree $\operatorname { Deg } ( F , \overline { D } \square ^ { n + 1 } , \theta )$ is the set $\{ \operatorname { deg } ( G , \overline { D } \square ^ { n + 1 } , \theta ) \}$ generated by all selecting pairs $( p , q )$ for the $n$-mapping $F$. A more general construction (without the condition that $F$ be $m$-acyclic) was introduced by B.D. Gelman (see [a10]); namely, the topological characteristic $\kappa ( F , \overline { D } \square ^ { n + 1 } ) = k$, where $k$ is defined by the equality

\begin{equation*} \delta ^ { * } \circ ( t - r ) ^ { * } \beta _ { 1 } = k ( \widehat{t ^ { * }} \square ^ { - 1 } \beta _ { 3 } ), \end{equation*}

$\beta_3$ is a generator in $H ^ { n + 1 } ( \overline { D } \square ^ { n + 1 } , S ^ { n } ) \cong \mathbf{Z}$, all the generators $\beta _ { i }$ are in accordance with the orientation of $E ^ { n + 1}$, and $\delta ^ { * } : H ^ { n } ( \Gamma _ { S ^ { n } } ) \rightarrow H ^ { n + 1 } ( \Gamma _ { \bar{D} \square ^ { n + 1 } } , \Gamma _ { S ^ { n } } )$ is a connecting homomorphism.

Note that an earlier definition of rotation of a set-valued field $\Phi x = x - F x$, $\Phi : \partial U \rightarrow E ^ { n + 1 } {\color{blue} \backslash} 0$, with non-acyclic images was given in [a8], [a13], [a14].

References

[a1] S. Eilenberg, N. Steenrod, "Foundations of algebraic topology" , Princeton Univ. Press (1952)
[a2] E.H. Spanier, "Algebraic topology" , McGraw-Hill (1966)
[a3] E.G. Begle, "The Vietoris mappings theorem for bicompact spaces" Ann. of Math. , 51 : 2 (1950) pp. 534–550
[a4] L. Górniewicz, "Homological methods in fixed-point theory of multi-valued maps" Dissert. Math. , CXXIX (1976) pp. 1–71
[a5] E.G. Sklyarenko, "Of some applications of theory of bundles in general topology" Uspekhi Mat. Nauk , 19 : 6 (1964) pp. 47–70 (In Russian)
[a6] S. Eilenberg, D. Montgomery, "Fixed point theorems for multi-valued transformations" Amer. J. Math. , 68 (1946) pp. 214–222
[a7] A. Granas, J.W. Jaworowski, "Some theorems on multi-valued maps of subsets of the Euclidean space" Bull. Acad. Polon. Sci. , 7 : 5 (1959) pp. 277–283
[a8] Yu.G. Borisovich, B.D. Gelman, V.V. Obukhovskii, "Of some topological invariants of set-valued maps with nonconvex images" Proc. Sem. Functional Analysis, Voronezh State Univ. , 12 (1969) pp. 85–95
[a9] Yu.G. Borisovich, B.D. Gelman, A.D. Myshkis, V.V. Obukhovskii, "Topological methods in the fixed-point theory of multi-valued maps" Russian Math. Surveys , 35 : 1 (1980) pp. 65–143 (In Russian)
[a10] Yu.G. Borisovich, B.D. Gelman, A.D. Myshkis, V.V. Obukhovskii, "Multivalued mappings" J. Soviet Math. , 24 (1984) pp. 719–791 (In Russian)
[a11] Yu.G. Borisovich, "A modern appoach to the theory of topological characteristics of nonlinear operators II" , Global analysis: Studies and Applications IV , Lecture Notes Math. , 1453 , Springer (1990) pp. 21–49
[a12] Yu.G. Borisovich, N.M. Bliznyakov, T.N. Fomenko, Y.A. Izrailevich, "Introduction to differential and algebraic topology" , Kluwer Acad. Publ. (1995)
[a13] L. Górniewicz, "On non-acyclic multi-valued mappings of subsets of Euclidean spaces" Bull. Acad. Polon. Sci. , 20 : 5 (1972) pp. 379–385
[a14] D.G. Bouvgin, "Cones and Vietoris–Begle type theorems" Trans. Amer. Math. Soc. , 174 (1972) pp. 155–183
How to Cite This Entry:
Vietoris-Begle theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Vietoris-Begle_theorem&oldid=50748
This article was adapted from an original article by Yu.G. Borisovich (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article