Namespaces
Variants
Actions

Valuation

From Encyclopedia of Mathematics
Revision as of 17:05, 7 February 2011 by 127.0.0.1 (talk) (Importing text file)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

logarithmic norm, norm on a field

A mapping from a field into , where is a totally ordered Abelian group, the adjoined element is assumed to be larger than any element of , and for all . Here the valuation must satisfy the following conditions:

1) , for ;

2) ;

3) .

The image of under is a subgroup of , called the value group of the valuation . Throughout what follows it is assumed that .

By the same axioms one defines logarithmic valuations of rings. Every ring with a non-Archimedean norm (cf. Norm on a field) can be made into a logarithmically-valued ring if one passes in the groupoid of values from the multiplicative to the additive notation and reverses the order. The element 0 is then naturally denoted by the symbol . The reverse transition from a ring with a logarithmic valuation to one with a non-Archimedean norm is also possible. If in a ring a non-Archimedean real norm is given, then the corresponding transition can be obtained by replacing each positive real number by . The resulting logarithmic valuation is also called real.

Two valuations and are said to be equivalent if there is an isomorphism of ordered groups such that for all non-zero elements ,

The set of those elements of for which is a subring of , called the valuation ring of in . It is always a local ring. The elements of for which form a maximal ideal of , called the valuation ideal of . The quotient ring , which is a field, is called the residue field of the valuation .

Let and be two valuations on a field . The rings of these valuations, regarded as subrings of , are the same if and only if these valuations are equivalent. Thus, knowing all valuations of a field (up to equivalence) is the same as knowing all subrings that occur as valuation rings for this field. A subring of is a valuation ring for if and only if for every non-zero element at least one of and belongs to . Thus, a valuation ring can be defined abstractly as an integral ring (integral domain) that satisfies this condition relative to its field of fractions. Every such ring is the ring of the so-called canonical valuation for its field of fractions, for which the value group is , where is the multiplicative group of invertible elements of , and is ordered by divisibility.

A valuation ring can be defined in yet another way. If are two local rings with maximal ideals and , respectively, then one says that dominates if . Dominance is a partial order relation on the set of subrings of . The maximal elements of this set are exactly the valuation rings of . If is a valuation ring and is a ring with the same field of fractions as , then is also a valuation ring and is the localization of with respect to some prime ideal.

Examples of valuations.

1) The valuation defined by

is called improper or trivial. Any valuation of a finite field is trivial.

2) Let be a field and let be the field of Laurent series over . Associating to a series , where , its order (and to the null series) is a valuation with value group (the additive group of integers) and valuation ring .

A valuation with values in is called discrete; about their valuation rings see Discretely-normed ring. For a description of all valuations of the field of rational numbers, see [4].

For each totally ordered Abelian group there is a valuation of a certain field with value group .

Ideals in valuation rings.

The set of ideals in a valuation ring is totally ordered by inclusion; every ideal of finite type is principal, that is, a valuation ring is a Bezout ring. A more complete description of the structure of ideals in a valuation ring can be given in terms of the value group of the valuation.

A subset of a totally ordered set is said to be major if and imply . Let be the ring of a valuation of a field with value group , let be the sub-semi-group of positive elements of , and let be a major set in . The mapping is a bijection between the set of major subsets of and the set of ideals of . Principal ideals correspond to majors having a minimal element. Prime ideals also correspond to majors of special form, namely: , where is the positive part of a convex subgroup of . Thus, there is a one-to-one correspondence between the prime ideals of and the convex subgroups of the value group .

Let be the prime ideal corresponding to a convex subgroup . Then the composite mapping is a valuation of with valuation ring and valuation ideal ; moreover, on the field there is an induced valuation with values in and valuation ring . In this manner a valuation splits into simpler ones. Let be a valuation ring. Then the prime spectrum of without the zero () is a totally ordered set, and its type is called the height or rank of the corresponding valuation. If is finite, then the height of the valuation is the number of elements in , and this is the same as the number of proper convex subgroups of . A valuation of finite rank can be reduced to valuations of rank 1. The latter are characterized by the fact that their value groups are Archimedean (cf. Archimedean group), that is, they are isomorphic to a subgroup of the additive group of real numbers. In this case the mapping is an ultrametric norm on .

An important property of valuation rings is that they are integrally closed. Moreover, for an arbitrary integral ring its integral closure is equal to the intersection of all valuation rings containing . A valuation ring is totally integrally closed if and only if its valuation is real, that is, has rank 1. A valuation ring is Noetherian if and only if the valuation is discrete.

Valuations and topologies.

Let be a valuation on a field and let , where . The collection of all , , is a fundamental system of neighbourhoods of zero for a topology of , which is said to be the topology determined by the valuation . It is separable and disconnected. The topology induced by on is, as a rule, different from that of a local ring. For a non-trivial valuation of the topology is locally compact if and only if is discrete, the valuation ring is complete, and the residue field of is finite; is then compact. The completion of relative to is a field; can be extended by continuity to a valuation , and the topology of is the same as . The valuation ring of is the completion of the valuation ring of .

Two valuations and of are called independent if the topologies and are distinct; this is equivalent to the fact that the valuation rings and generate . Inequivalent valuations of height 1 are always independent. There is an approximation theorem for valuations: Let , , be independent valuations, let , . Then there is an element in such that for all .

Extension of valuations.

If is a valuation of and is a subfield of , then the restriction of to is a valuation of , and its value group is a subgroup of ; is then called an extension of . Conversely, if is a valuation on and is an extension of , then there is always a valuation of that extends . The index of in is called the ramification index of with respect to and is denoted by . The residue field of can be identified with a subfield of the residue field and the degree of the extension is denoted by and is called the residue degree of relative to . An extension of a valuation is said to be immediate if .

Let be an extension of and let be the set of all extensions of to . If is a finite extension of of degree , then the set of all extensions of is finite, and

In several cases equality holds, for example when is discrete and either is complete or is separable over . If is a normal extension of , then the extensions of to are permuted transitively by the -automorphisms of ; in particular, if is a purely inseparable extension of , then has only one extension. In the case of an arbitrary extension and an extension of a valuation , the transcendence degree of over is greater than or equal to the sum

where is the transcendence degree of the extension of the residue field of over that of and is the dimension of the space .

The concept of a valuation was introduced and studied by W. Krull in [1]. It is also widely used in algebraic geometry. Thus, in terms of "valuation rings" one can construct the abstract Riemann surface of a field (cf. [3]).

References

[1] W. Krull, "Allgemeine Bewertungstheorie" J. Reine Angew. Math. , 167 (1932) pp. 160–196
[2] N. Bourbaki, "Elements of mathematics. Commutative algebra" , Addison-Wesley (1972) (Translated from French)
[3] O. Zariski, P. Samuel, "Commutative algebra" , 2 , Springer (1975)
[4] A.G. Kurosh, "Lectures on general algebra" , Chelsea (1963) (Translated from Russian)


Comments

References

[a1] O. Endler, "Valuation theory" , Springer (1972)
How to Cite This Entry:
Valuation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Valuation&oldid=13681
This article was adapted from an original article by V.I. Danilov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article