User talk:Musictheory2math

From Encyclopedia of Mathematics
Revision as of 16:04, 15 March 2017 by Musictheory2math (talk | contribs) (relationship between rational numbers and algebraic numbers and transcendental numbers)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

This is a true and important theory please study that carefully.

Let t=0.t(1)t(2)t(3)... be a algebraic number in interval (0,1) of real numbers then there is a rational number in interval (0,1) of real numbers like b =0.b(1)b(2)b(3)... such that if H be a set contain h (h is in Natural numbers) that t(h)=b(h) then H is a infinite subset of Natural numbers and if t be a transcendental number then for each rational number b, the set H must be a finite set.

How to Cite This Entry:
Musictheory2math. Encyclopedia of Mathematics. URL: