Namespaces
Variants
Actions

Difference between revisions of "User:Whayes43"

From Encyclopedia of Mathematics
Jump to: navigation, search
 
(27 intermediate revisions by the same user not shown)
Line 1: Line 1:
A system of five axioms for the set of natural numbers $\mathbb{N}$ <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p0718801.png" /> and a function $S$ <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p0718802.png" /> (successor) on it, introduced by G. Peano (1889):
+
Each statement of a syllogism is one of 4 types, as follows:
  
# $0 \in \mathbb{N}$
+
::{| class="wikitable"
# $x \in \mathbb{N} \to Sx \in \mathbb{n}$
+
|-
# $x \in \mathbb{N} \to Sx \neq 0$
+
! Type !! Statement !! Alternative
# $x \in \mathbb{N} \wedge y \in \mathbb{N} \wedge Sx =Sy \to x = y$
+
|-
# $0 \in M \wedge \forall x (x\in M \to Sx\in M) \to \mathbb{N} \subseteq M$ for any property $M$ (axiom of induction).
+
| style="text-align: center;" | '''A''' || '''All''' $A$ '''are''' $B$ ||
 
+
|-
In the first version of his system, Peano used $1$ instead of $0$ in Axioms 1, 3, and 5. Similar axioms were proposed by R. Dedekind (1888).
+
| style="text-align: center;" | '''I''' || '''Some''' $A$ '''are''' $B$ ||
 
+
|-
Peano's axioms are categorical, that is, any two systems <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p0718809.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p07188010.png" /> satisfying them are isomorphic. The isomorphism is determined by a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p07188011.png" />, where
+
| style="text-align: center;" | '''E''' || '''No''' $A$ '''are''' $B$ || (= '''All''' $A$ '''are not''' $B$)
 
+
|-
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p07188012.png" /></td> </tr></table>
+
| style="text-align: center;" | '''O''' || '''Not All''' $A$ '''are''' $B$ || (= '''Some''' $A$ '''are not''' $B$)
 
+
|}
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p07188013.png" /></td> </tr></table>
 
 
 
The existence of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p07188014.png" /> for all pairs <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p07188015.png" /> and the mutual single-valuedness for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p07188016.png" /> are proved by induction.
 
 
 
Peano's axioms make it possible to develop number theory and, in particular, to introduce the usual arithmetic functions and to establish their properties.
 
 
 
All the axioms are independent, but
 
 
 
and
 
 
 
can be combined to a single one:
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p07188017.png" /></td> </tr></table>
 
 
 
if one defines <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p07188018.png" /> as
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p07188019.png" /></td> </tr></table>
 
 
 
The independence of the axioms is proved by exhibiting, for each axiom, a model for which the other axioms are true, but the one being considered is false:
 
* For Axiom 1, such a model is the series of natural numbers beginning with $1$
 
* For Axiom 2, it is the set $\mathbb{N} \cup \{1/2\}$, with $S0 = 1/2$ and $S1/2 =1$
 
* For Axiom 3, it is the set $\{0\}$, with $S0 = 0$
 
* For Axiom 4, it is the set $\{0, 1\}$, with $S0 = S1 = 1$
 
* For Axiom 5, it is the set $\mathbb{N} \cup \{-1\}$, with $S-1 = -1$
 
 
 
Sometimes one understands by Peano arithmetic the system in the first-order language with the function symbols $S, +, *$<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p07188027.png" />, consisting of the axioms
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p07188028.png" /></td> </tr></table>
 
 
 
defining equalities for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p07188029.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p07188030.png" />, and the induction scheme
 
 
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p07188031.png" /></td> </tr></table>
 
 
 
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p07188032.png" /> is an arbitrary formula, known as the induction formula (see [[Arithmetic, formal|Arithmetic, formal]]).
 
 
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  S.C. Kleene,  "Introduction to metamathematics" , North-Holland  (1951)</TD></TR></table>
 
 
 
====Comments====
 
 
 
The system of Peano arithmetic mentioned at the end of the article above is no longer categorical (cf. also [[Categoric system of axioms|Categoric system of axioms]]), and gives rise to so-called non-standard models of arithmetic.
 
 
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  H.C. Kennedy,  "Peano. Life and works of Giuseppe Peano" , Reidel  (1980)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  H.C. Kennedy,  "Selected works of Giuseppe Peano" , Allen &amp; Unwin  (1973)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  E. Landau,  "Grundlagen der Analysis" , Akad. Verlagsgesellschaft  (1930)</TD></TR></table>
 

Latest revision as of 13:39, 14 October 2015

Each statement of a syllogism is one of 4 types, as follows:

Type Statement Alternative
A All $A$ are $B$
I Some $A$ are $B$
E No $A$ are $B$ (= All $A$ are not $B$)
O Not All $A$ are $B$ (= Some $A$ are not $B$)
How to Cite This Entry:
Whayes43. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Whayes43&oldid=36469