Namespaces
Variants
Actions

Difference between revisions of "User:Whayes43"

From Encyclopedia of Mathematics
Jump to: navigation, search
Line 31: Line 31:
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p07188019.png" /></td> </tr></table>
 
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p07188019.png" /></td> </tr></table>
  
The independence is proved by exhibiting a model on which all the axioms are true except one. For
+
The independence is proved by exhibiting a model on which all the axioms are true except one.
  
such a model is the series of natural numbers beginning with 1; for
+
* For Axiom 1, such a model is the series of natural numbers beginning with $1$
 
+
* For Axiom 2, it is the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p07188020.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p07188021.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p07188022.png" />
it is the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p07188020.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p07188021.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p07188022.png" />; for
+
* For Axiom 3, it is the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p07188023.png" />
 
+
* For Axiom 4, it is the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p07188024.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p07188025.png" />
the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p07188023.png" />; for
+
* For Axiom 5, it is the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p07188026.png" />
 
 
the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p07188024.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p07188025.png" />; for
 
 
 
the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p07188026.png" />.
 
  
 
Sometimes one understands by Peano arithmetic the system in the first-order language with the function symbols <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p07188027.png" />, consisting of the axioms
 
Sometimes one understands by Peano arithmetic the system in the first-order language with the function symbols <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071880/p07188027.png" />, consisting of the axioms

Revision as of 17:09, 11 June 2015

A system of five axioms for the set of natural numbers and a function (successor) on it, introduced by G. Peano (1889):

1) ;

2) ;

3) ;

4) ;

5) for any property (axiom of induction).

In the first version, Peano used $1$ instead of $0$ in Axioms 1, 3, and 5. Similar axioms were proposed by R. Dedekind (1888).

Peano's axioms are categorical, that is, any two systems and satisfying them are isomorphic. The isomorphism is determined by a function , where

The existence of for all pairs and the mutual single-valuedness for are proved by induction. Peano's axioms make it possible to develop number theory; in particular, to introduce the usual arithmetic functions and to establish their properties. All the axioms are independent, but

and

can be combined to a single one:

if one defines as

The independence is proved by exhibiting a model on which all the axioms are true except one.

  • For Axiom 1, such a model is the series of natural numbers beginning with $1$
  • For Axiom 2, it is the set , where ,
  • For Axiom 3, it is the set
  • For Axiom 4, it is the set with
  • For Axiom 5, it is the set

Sometimes one understands by Peano arithmetic the system in the first-order language with the function symbols , consisting of the axioms

defining equalities for and , and the induction scheme

where is an arbitrary formula, known as the induction formula (see Arithmetic, formal).

References

[1] S.C. Kleene, "Introduction to metamathematics" , North-Holland (1951)


Comments

The system of Peano arithmetic mentioned at the end of the article above is no longer categorical (cf. also Categoric system of axioms), and gives rise to so-called non-standard models of arithmetic.

References

[a1] H.C. Kennedy, "Peano. Life and works of Giuseppe Peano" , Reidel (1980)
[a2] H.C. Kennedy, "Selected works of Giuseppe Peano" , Allen & Unwin (1973)
[a3] E. Landau, "Grundlagen der Analysis" , Akad. Verlagsgesellschaft (1930)
How to Cite This Entry:
Whayes43. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Whayes43&oldid=36465